我有这段代码来尝试从此处找到的法律中提取物种https://laws.justice.gc.ca/fra/lois/S-15.3/TexteComplet.html
但是,我无法让 html_nodes 找到每个部分
section <- div_content %>% html_nodes(xpath = paste0("//h2[contains(text(), '", header, "')]/following-sibling::div[contains(@class, 'ProvisionList')]"))
基本上,我找不到一种方法来获取文本内容并匹配其他部分。我尝试添加“
”标签并查找每个部分的文本,但它不起作用(获得
{xml_nodeset (0)}
)
我试图获取在 id 为“425426”的 div 中找到的数据,然后在 ScheduleLabel 中从 ScheduleTitleText 获取文本。我需要另一列 SchedHeadL1(这是包含物种的部分的标题)和 BilingualGroupTitleText 中找到的文本(说明动物或植物组...)。然后提供一个嵌套的物种列表(这里我将物种与法语名称、拉丁语和英语分开)
library(rvest)
library(dplyr)
library(stringr)
# URL of the webpage
url <- "https://laws.justice.gc.ca/fra/lois/S-15.3/TexteComplet.html"
# Read the webpage content
webpage <- read_html(url)
# Extract the div with id "425426"
div_content <- webpage %>% html_node("#425426")
# Extract the header h2 with class "scheduleTitleText" from the class "scheduleLabel" and id "h-425427"
schedule_label <- div_content %>% html_node("h2.scheduleLabel#h-425427") %>% html_text()
# Extract all h2 headers with class "SchedHeadL1"
headers <- div_content %>% html_nodes("h2.SchedHeadL1") %>% html_text()
# Use str_extract to extract the "PARTIE #" part
partie_numbers <- str_extract(headers, "PARTIE \\d+")
# Use str_remove to remove the "PARTIE #" part from the original strings
descriptions <- str_remove(headers, "PARTIE \\d+")
# Combine into a data frame
result <- data.frame(Partie = partie_numbers, Description = descriptions, stringsAsFactors = FALSE)
headers_prep = result |>
unite(pd, Partie, Description, sep = "<br>") |> pull(pd)
# Initialize lists to store the extracted data
group_titles <- list()
item_first <- list()
item_second <- list()
scientific_names <- list()
latin_names <- list()
# Loop through each header to extract the associated content
for (header in headers) {
# Extract the section associated with the current header
section <- div_content %>% html_nodes(xpath = paste0("//h2[contains(text(), '", header, "')]/following-sibling::div[contains(@class, 'ProvisionList')]"))
# Extract BilingualGroupTitleText within the section
group_title <- section %>% html_nodes(".BilingualGroupTitleText") %>% html_text()
group_titles <- c(group_titles, group_title)
# Extract BilingualItemFirst within the section
item_first_section <- section %>% html_nodes(".BilingualItemFirst") %>% html_text()
item_first <- c(item_first, item_first_section)
# Extract BilingualItemSecond within the section
item_second_section <- section %>% html_nodes(".BilingualItemSecond") %>% html_text()
item_second <- c(item_second, item_second_section)
# Extract otherLang (scientific names) within the section
scientific_name_section <- section %>% html_nodes(".otherLang") %>% html_text()
scientific_names <- c(scientific_names, scientific_name_section)
# Extract scientific Latin names from BilingualItemFirst
latin_name_section <- str_extract(item_first_section, "\\(([^)]+)\\)") %>% str_replace_all("[()]", "")
latin_names <- c(latin_names, latin_name_section)
}
# Ensure all columns have the same length by repeating the last element if necessary
max_length <- max(length(headers), length(group_titles), length(item_first), length(item_second), length(scientific_names), length(latin_names))
schedule_label <- rep(schedule_label, length.out = max_length)
headers <- rep(headers, length.out = max_length)
group_titles <- rep(group_titles, length.out = max_length)
item_first <- rep(item_first, length.out = max_length)
item_second <- rep(item_second, length.out = max_length)
scientific_names <- rep(scientific_names, length.out = max_length)
latin_names <- rep(latin_names, length.out = max_length)
# Create a data frame
data <- data.frame(
ScheduleLabel = schedule_label,
Header = headers,
GroupTitle = group_titles,
ItemFirst = item_first,
ItemSecond = item_second,
ScientificName = scientific_names,
LatinName = latin_names,
stringsAsFactors = FALSE
)
不是最干净的代码——但它可以工作。
library(tidyverse)
library(rvest)
page <- "https://laws.justice.gc.ca/eng/acts/s-15.3/FullText.html" %>%
read_html()
page %>%
html_element(".Schedule") %>%
html_elements(".SchedHeadL1, .BilingualGroupTitleText, .BilingualItemFirst") %>%
map_chr(html_text2) %>%
tibble(species = .) %>%
mutate(section = if_else(str_detect(species, pattern = "PART"), species, NA),
group = if_else(!str_detect(species, pattern = "\\("), species, NA)) %>%
fill(section) %>%
filter(!str_detect(species, "PART")) %>%
fill(group) %>%
filter(str_detect(species, "\\(")) %>%
mutate(across(section, ~ str_remove_all(.x, "PART \\d+\\n")))
# A tibble: 671 × 3
species section group
<chr> <chr> <chr>
1 Ferret, Black-footed (Mustela nigripes) Extirpated Species Mammals
2 Walrus, Atlantic (Odobenus rosmarus rosmarus) Northwest Atlantic population Extirpated Species Mammals
3 Whale, Grey (Eschrichtius robustus) Atlantic population Extirpated Species Mammals
4 Prairie-Chicken, Greater (Tympanuchus cupido pinnatus) Extirpated Species Birds
5 Sage-Grouse phaios subspecies, Greater (Centrocercus urophasianus phaios) Extirpated Species Birds
6 Salamander, Eastern Tiger (Ambystoma tigrinum) Carolinian population Extirpated Species Amphibians
7 Gophersnake, Pacific (Pituophis catenifer catenifer) Extirpated Species Reptiles
8 Lizard, Pygmy Short-horned (Phrynosoma douglasii) Extirpated Species Reptiles
9 Rattlesnake, Timber (Crotalus horridus) Extirpated Species Reptiles
10 Turtle, Eastern Box (Terrapene carolina) Extirpated Species Reptiles
# ℹ 661 more rows
# ℹ Use `print(n = ...)` to see more rows