问题描述 投票:0回答:0
# Load necessary libraries if (!require(forcats)) { install.packages("forcats", dependencies = TRUE) library(forcats) } # Set the working directory to where your data and process.R file are located setwd("MYPATH") # Check the current working directory to verify the change cat("Current working directory:", getwd(), "\n") # Load the data political_position_data <- read.csv("MYDATA.csv") # Subset the data to only include entries where CountryCode is 1 us_data <- subset(political_position_data, CountryCode == 1) # Convert Rec_Cond and PO3_Ex to factors us_data$Rec_Cond <- as.factor(us_data$Rec_Cond) us_data$PO3_Ex <- as.factor(us_data$PO3_Ex) # Convert other covariates to numeric us_data$BiGender <- as.numeric(as.character(us_data$BiGender)) us_data$BiEducation <- as.numeric(as.character(us_data$BiEducation)) us_data$Bi_Age <- as.numeric(as.character(us_data$Bi_Age)) # Verify the levels of categorical variables cat("Levels of Rec_Cond:", levels(us_data$Rec_Cond), "\n") cat("Levels of PO3_Ex:", levels(us_data$PO3_Ex), "\n") # Print a summary to verify the data preparation cat("Summary of us_data:\n") print(summary(us_data)) # Load the PROCESS macro (make sure the file exists in the specified path) source("process.R") # Run the PROCESS macro with mcx and mcw options for multicategorical variables results <- process(data = us_data, y = "Conf_gov", x = "Rec_Cond", m = "STAXI", w = "PO3_Ex", cov = c("BiGender", "BiEducation", "Bi_Age"), model = 58, mcx = list(Rec_Cond = levels(us_data$Rec_Cond)), mcw = list(PO3_Ex = levels(us_data$PO3_Ex))) # Print the results print(results)

我认为这个问题很简单,因为将非数字值传递给MCW变量:

mcw= list(po3_ex = latver(us_data $ po3_ex)))
检查列表的输出(po3_ex = laste(us_data $ po3_ex)))为),并确保其数据类型进程期望它是数字数据类型,因为它试图使用trunc()函数.
    

process macros
最新问题
© www.soinside.com 2019 - 2025. All rights reserved.