基于论证框架理论,我正在尝试使用Z3Py证明者对可允许集合进行编码。但是,我遇到了一些问题,希望对如何改进它有所指点。
基于Wikipedia的定义,当且仅当它没有冲突并且其所有参数对于E都是可接受的时,才允许使用一组参数E。
基于以下带有参数的有向图:a,b,c,d,e和关系:(a,d),(a,b),(b,c),(c,b),(c, d),(e,a)允许集合的正确解是:[],[e],[c],[c,e],[b,e],[b,d,e]
我开始使用Z3Py,但是在编码时遇到问题。
到目前为止,我有这个:
from z3 import *
a, b, c, d, e = Bools('a b c d e')
arguments = [a, b, c, d, e]
solver = Solver()
relations = [(a, d), (a, b), (b, c), (c, b), (c, d), (e, a)]
# ensure there are no conflicting arguments
for relation in relations:
solver.append(Implies(relation[0], Not(relation[1])))
for argument in arguments:
# if not attacked then removed any arguments attacked by this argument
if len([item for item in relations if item[1] == argument]) == 0:
solver.append([Not(attacked[1]) for attacked in relations if attacked[0] == argument])
# if self attacking remove the argument
if len([item for item in relations if item[1] == argument and item[0] == argument]) > 0:
solver.append(Not(argument))
# get all attackers
attackers = [item[0] for item in relations if item[1] == argument]
for attacker in attackers:
# get defenders of the initial argument (arguments attacking the attacker)
defenders = [item[0] for item in relations if item[1] == attacker]
defending_z3 = []
if len(defenders) > 0:
for defender in defenders:
if defender not in attackers:
defending_z3.append(defender)
if len(defending_z3) > 0:
solver.append(Implies(Or([defend for defend in defending_z3]), argument))
else:
solver.append(Not(argument))
# get solutions
solutions = []
while solver.check() == sat:
model = solver.model()
block = []
solution = []
for var in arguments:
v = model.eval(var, model_completion=True)
block.append(var != v)
if is_true(v):
solution.append(var)
solver.add(Or(block))
solutions.append(solution)
for solution in solutions:
print(solution)
[执行时,它为我提供以下解决方案:[],[c],[d],[b,d],[b,d,e],其中只有3个是正确的:
任何帮助将不胜感激。
这对于解决SMT来说确实是一个很大的问题,即使您拥有非常多的set,z3也将能够相对轻松地处理此类问题。
您的编码思路是正确的,但是您正在混淆相等性:在测试变量是否与另一个变量相同时,请务必小心。为此,请使用Python的eq
方法。 (如果您使用==
,则将获得符号相等性测试,这不是您在此处查找的内容。)
鉴于此,我倾向于将您的问题编码如下:
from z3 import *
a, b, c, d, e = Bools('a b c d e')
arguments = [a, b, c, d, e]
solver = Solver()
relations = [(a, d), (a, b), (b, c), (c, b), (c, d), (e, a)]
# No conflicting arguments
for relation in relations:
solver.add(Not(And(relation[0], relation[1])))
# For each element, if it is attacked, then another element that
# attacks the attacker must be present:
for argument in arguments:
# Find the attackers for this argument:
attackers = [relation[0] for relation in relations if argument.eq(relation[1])]
# We must defend against each attacker:
for attacker in attackers:
defenders = [relation[0] for relation in relations if relation[1].eq(attacker)]
# One of the defenders must be included:
solver.add(Implies(argument, Or(defenders)))
# Collect the solutions:
while solver.check() == sat:
model = solver.model()
block = []
solution = []
for var in arguments:
v = model.eval(var, model_completion=True)
block.append(var != v)
if is_true(v):
solution.append(str(var))
solver.add(Or(block))
solution.sort()
print(solution)
希望这些代码应易于遵循。如果没有,请随时提出具体问题。
运行时,我得到:
[]
['c']
['c', 'e']
['e']
['b', 'e']
['b', 'd', 'e']
似乎与您预期的解决方案相符。