如何修复 R 中没有缺失值的 t.test 错误消息?

问题描述 投票:0回答:2

我的数据框如下:

    Df <- structure(list(SES = c("High", "High", "High", "Low", "High", 
"Low", "High", "High", "High", "Low", "Low", "Low", "High", "High", 
"Low", "High", "High", "Low", "High", "High", "Low", "High", 
"Low", "Low", "Low", "Low", "High", "Low", "High", "Low", "High", 
"High", "Low", "High", "Low", "High", "High", "High", "Low", 
"High", "High", "Low", "Low", "High", "Low", "Low", "Low", "Low", 
"High", "High", "Low", "High"), entry_age = c(12, 2.5, 7, 2.5, 
2.5, 12, 9, 2.5, 3, 8, 12, 2.5, 5.5, 6, 2.5, 2.5, 2.5, 16, 12, 
5, 7, 2.5, 12, 2.5, 2.5, 12, 12, 12, 6, 24, 2.5, 2.5, 2, 3.5, 
2.5, 2.5, 2.5, 4, 7, 12, 7, 9, 12, 6, 18, 15, 8, 12, 2.5, 6, 
10, 5)), row.names = c(NA, -52L), class = c("tbl_df", "tbl", 
"data.frame"))

我的均值有很大差异,并且想使用 t.test 函数通过 t 检验来测试其显着性,如下所示:

t.test(Df$SES, Df$entry_age)

非常简单,没什么复杂的。 但是,我得到的是以下错误代码,我不明白:

Error in if (stderr < 10 * .Machine$double.eps * max(abs(mx), abs(my))) stop("data are essentially constant") : 
  missing value where TRUE/FALSE needed
In addition: Warning messages:
1: In mean.default(x) :
  l'argument n'est ni numérique, ni logique : renvoi de NA
2: In var(x) : NAs introduced by coercion

我进行了 NA 测试,但没有。

你能帮我一下吗? 很抱歉这个非常低级的问题,但在 Google 中没有找到此错误消息的含义。

你将得到我无尽的感激

r t-test
2个回答
1
投票

help('t.test')
了解用法;按照您的调用方式,它期望测试组 x=Df$SE (这不是您想要的)和 y=Df$entry_age 之间的值。那么试试这个:

Df <- structure(list(SES = c("High", "High", "High", "Low", "High", 
"Low", "High", "High", "High", "Low", "Low", "Low", "High", "High", 
"Low", "High", "High", "Low", "High", "High", "Low", "High", 
"Low", "Low", "Low", "Low", "High", "Low", "High", "Low", "High", 
"High", "Low", "High", "Low", "High", "High", "High", "Low", 
"High", "High", "Low", "Low", "High", "Low", "Low", "Low", "Low", 
"High", "High", "Low", "High"), entry_age = c(12, 2.5, 7, 2.5, 
2.5, 12, 9, 2.5, 3, 8, 12, 2.5, 5.5, 6, 2.5, 2.5, 2.5, 16, 12, 
5, 7, 2.5, 12, 2.5, 2.5, 12, 12, 12, 6, 24, 2.5, 2.5, 2, 3.5, 
2.5, 2.5, 2.5, 4, 7, 12, 7, 9, 12, 6, 18, 15, 8, 12, 2.5, 6, 
10, 5)), row.names = c(NA, -52L), class = c("tbl_df", "tbl", 
"data.frame"))

t.test(entry_age~SES, data=Df)
#> 
#>  Welch Two Sample t-test
#> 
#> data:  entry_age by SES
#> t = -2.9888, df = 35.479, p-value = 0.005059
#> alternative hypothesis: true difference in means between group High and group Low is not equal to 0
#> 95 percent confidence interval:
#>  -6.695627 -1.280563
#> sample estimates:
#> mean in group High  mean in group Low 
#>           5.303571           9.291667

reprex 包于 2022 年 5 月 17 日创建(v2.0.1)


-1
投票

我在 agricolae 中的 waller.test 中遇到了类似的错误。我试图追踪它,但我完全无法纠正它。

这是我的数据框的一瞥:

print(obj1)
   ID code bp stage dose rep day numberinitiated numberhealth numberdead
1   1  BAA  n     a    A   1   0              10           10          0
2   2  BAA  n     a    A   2   0              10           10          0
3   3  BAA  n     a    A   3   0              10           10          0
4   4  BPA  n     p    A   1   0              10           10          0
5   5  BPA  n     p    A   2   0              10           10          0
6   6  BPA  n     p    A   3   0              10           10          0
7   7  BLA  n     l    A   1   0              10           10          0
8   8  BLA  n     l    A   2   0              10           10          0
9   9  BLA  n     l    A   3   0              10           10          0
10 10  BAF  b     a    F   1   0              10           10          0
11 11  BAF  b     a    F   2   0              10            9          1
12 12  BAF  b     a    F   3   0              10           10          0
13 13  BPF  b     p    F   1   0              10            9          1
14 14  BPF  b     p    F   2   0              10           10          0
15 15  BPF  b     p    F   3   0              10            9          1
16 16  BLF  b     l    F   1   0              10            9          1
17 17  BLF  b     l    F   2   0              10            9          1
18 18  BLF  b     l    F   3   0              10            7          3
19 19  BAE  b     a    E   1   0              10            6          4
20 20  BAE  b     a    E   2   0              10            6          4
21 21  BAE  b     a    E   3   0              10            6          4
22 22  BPE  b     p    E   1   0              10            1          9
23 23  BPE  b     p    E   2   0              10            3          7
24 24  BPE  b     p    E   3   0              10            2          8
25 25  BLE  b     l    E   1   0              10            8          2
26 26  BLE  b     l    E   2   0              10            6          4
27 27  BLE  b     l    E   3   0              10            7          3
28 28  BAD  b     a    D   1   0              10            0         10
29 29  BAD  b     a    D   2   0              10            1          9
30 30  BAD  b     a    D   3   0              10            2          8
31 31  BPD  b     p    D   1   0              10            6          4
32 32  BPD  b     p    D   2   0              10            0         10
33 33  BPD  b     p    D   3   0              10            0         10
34 34  BLD  b     l    D   1   0              10            9          1
35 35  BLD  b     l    D   2   0              10            5          5
36 36  BLD  b     l    D   3   0              10            7          3
37 37  BAC  b     a    C   1   0              10            9          1
38 38  BAC  b     a    C   2   0              10            9          1
39 39  BAC  b     a    C   3   0              10            8          2
40 40  BPC  b     p    C   1   0              10            6          4
41 41  BPC  b     p    C   2   0              10            9          1
42 42  BPC  b     p    C   3   0              10            8          2
43 43  BLC  b     l    C   1   0              10            7          3
44 44  BLC  b     l    C   2   0              10            8          2
45 45  BLC  b     l    C   3   0              10            8          2
46 46  BAB  b     a    B   1   0              10            0         10
47 47  BAB  b     a    B   2   0              10            0         10
48 48  BAB  b     a    B   3   0              10            1          9
49 49  BPB  b     p    B   1   0              10            5          5
50 50  BPB  b     p    B   2   0              10            0         10
51 51  BPB  b     p    B   3   0              10            0         10
52 52  BLB  b     l    B   1   0              10            0         10
53 53  BLB  b     l    B   2   0              10           10         10
54 54  BLB  b     l    B   3   0              10            0         10
55 55  MAF  m     a    F   1   0              10           10          0
56 56  MAF  m     a    F   2   0              10           10          0
57 57  MAF  m     a    F   3   0              10           10          0
58 58  MPF  m     p    F   1   0              10           10          0
59 59  MPF  m     p    F   2   0              10           10          0
60 60  MPF  m     p    F   3   0              10           10          0
61 61  MLF  m     l    F   1   0              10           10          0
62 62  MLF  m     l    F   2   0              10           10          0
63 63  MLF  m     l    F   3   0              10           10          0
64 64  MAE  m     a    E   1   0              10           10          0
65 65  MAE  m     a    E   2   0              10           10          0
66 66  MAE  m     a    E   3   0              10           10          0
67 67  MPE  m     p    E   1   0              10           10          0
68 68  MPE  m     p    E   2   0              10           10          0
69 69  MPE  m     p    E   3   0              10           10          0
70 70  MLE  m     l    E   1   0              10           10          0
71 71  MLE  m     l    E   2   0              10           10          0
72 72  MLE  m     l    E   3   0              10           10          0
73 73  MAD  m     a    D   1   0              10           10          0
74 74  MAD  m     a    D   2   0              10           10          0
75 75  MAD  m     a    D   3   0              10           10          0
76 76  MPD  m     p    D   1   0              10           10          0
   numberinfected event PctMrt
1               0     0      0
2               0     0      0
3               0     0      0
4               0     0      0
5               0     0      0
6               0     0      0
7               0     0      0
8               0     0      0
9               0     0      0
10              0     0      0
11              0     0     10
12              0     0      0
13              0     0     10
14              0     0      0
15              0     0     10
16              0     0     10
17              0     0     10
18              0     0     30
19              0     0     40
20              0     0     40
21              0     0     40
22              0     0     90
23              0     0     70
24              0     0     80
25              0     0     20
26              0     0     40
27              0     0     30
28              0     0    100
29              0     0     90
30              0     0     80
31              0     0     40
32              0     0    100
33              0     0    100
34              0     0     10
35              0     0     50
36              0     0     30
37              0     0     10
38              0     0     10
39              0     0     20
40              0     0     40
41              0     0     10
42              0     0     20
43              0     0     30
44              0     0     20
45              0     0     20
46              0     0    100
47              0     0    100
48              0     0     90
49              0     0     50
50              0     0    100
51              0     0    100
52              0     0    100
53              0     0      0
54              0     0    100
55              0     0      0
56              0     0      0
57              0     0      0
58              0     0      0
59              0     0      0
60              0     0      0
61              0     0      0
62              0     0      0
63              0     0      0
64              0     0      0
65              0     0      0
66              0     0      0
67              0     0      0
68              0     0      0
69              0     0      0
70              0     0      0
71              0     0      0
72              0     0      0
73              0     0      0
74              0     0      0
75              0     0      0
76              0     0      0

这是代码:

Effmodel <- lm(event ~ dose, data = obj1)
summary(Effmodel)
anovaEff <- anova(Effmodel)
waller.test (Effmodel, "dose", group = TRUE)

这是错误:

waller.test (Effmodel, "dose", group = TRUE)
Error in if ((K - IN0/ID0) * (K - IN1/ID1) <= 0) b0 <- t : 
  missing value where TRUE/FALSE needed

请帮助我,因为我已经被困了 4 个小时并且谷歌搜索错误没有帮助。

© www.soinside.com 2019 - 2024. All rights reserved.