我正在开发一个 R Shiny 项目,以可视化世界上所有的机场。 下面包含的代码是我的项目的示例。 从功能上讲,该应用程序按预期工作 - 当您选择不同的国家/地区时,数据表和地图会更新。 但是,我对地图上的点有一些疑问。 由于点的半径取决于从机场出发的航线数量,因此在可能有多个大型机场的人口稠密地区(例如:芝加哥),一些较大的点与较小的点重叠。 我在 AddCircles 函数中使用了 FillOpacity 参数以使其更加透明,以便您可以看到潜在的遮罩点。 然而,当我在下面的代码中使用它时,似乎这个参数被忽略了:
#Dataset 1: Routes
routes=read.csv(url("https://raw.githubusercontent.com/jpatokal/openflights/master/data/routes.dat"))
dim(routes)
#67662 9
str(routes)
#Dataset #2: Airports
airports=read.csv(url("https://raw.githubusercontent.com/jpatokal/openflights/master/data/airports-extended.dat"))
dim(airports)
#12667 14
#Rename columns
colnames(routes)=c("Airline","AirlineID","IATA","SourceAP_ID","DestinationAirport","DestAP_ID","Codeshare","Stops","Equipment")
colnames(airports)=c("AirportID","Name","City","Country","IATA","ICAO","Latitude","Longitude","Altitude","Timezone","DST","TzDatabaseTz","Type","Source")
#Join datasets on Source Airport
#-------------------------------#
#IATA in airports
#SourceAirport in routes (IATA)
fullair=merge(x=routes,y=airports,by="IATA",all.x=TRUE)
fullair2=subset(fullair,fullair$Type=="airport")
library(dplyr)
#Make a new unique ID by combining IATA and Destination Airport
fullair2$UniqueID=paste0(fullair2$IATA,"_",fullair2$DestinationAirport)
#Create column that assigns number of unique routes to single airport
fullair3=fullair2 %>%
group_by(IATA) %>%
mutate(Count=n_distinct(UniqueID)) %>%
ungroup()
fullair3=as.data.frame(fullair3)
#Get rid of duplicates
fullair3=fullair3[!duplicated(fullair3[c("UniqueID")]),]
library(rowr)
library(sqldf)
library(RSQLite)
#-----------Number of Routes from Destination------------#
SpitOutNum=sqldf("select IATA,count(*)
from fullair3
group by IATA")
SpitOutNum=as.data.frame(SpitOutNum)
colnames(SpitOutNum)=c("IATA","DestinationCount")
fullair3=merge(x=fullair3,y=SpitOutNum,by="IATA",all.x=TRUE)
#Create the full name
fullair3$NamePart1=paste("(",fullair3$IATA,")",sep ="")
fullair3$FullName=paste(fullair3$Name, fullair3$NamePart1)
fullair3$NamePart1=NULL
fullair3$Name2Part1=paste("(",fullair3$DestinationAirport,")",sep ="")
fullair3$DestFullName=paste(fullair3$DestAirportName, fullair3$Name2Part1)
fullair3$Name2Part1=paste("(",fullair3$DestinationAirport,")",sep ="")
fullair3$DestFullName=paste(fullair3$DestAirportName, fullair3$Name2Part1)
table2=sqldf("select Country, FullName as 'Airport Name', City, count(*) as 'Number of Routes'
from fullair3
group by Country, FullName, City
order by count(*) desc")
#Sort by FullName
fullair3= fullair3[order(fullair3$FullName),]
#-----------------------------------------------------
library(shinydashboard)
library(shiny)
library(leaflet)
library(leaflet.extras)
library(rgdal)
library(sp)
library(raster)
library(DT)
library(markdown)
library(geosphere)
library(htmltools)
airportchoices=unique(fullair3$FullName)
countrychoices=unique(fullair3$Country)
countrychoices=as.character(countrychoices)
countrychoices=sort(countrychoices)
# Define UI for application
ui <- fluidPage(
dashboardPage(
dashboardHeader(title="Airport Analysis"),
dashboardSidebar(
sidebarMenu(
menuItem("Country Maps",
tabName = "CountryMaps",
icon=icon("flag")
))
),
dashboardBody(
tabItems(
tabItem(
tabName = "CountryMaps",
tags$style(type="text/css","#country_airports {height:calc(100vh - 80px) !important;}"),
fluidRow(column(4),
column(8, selectInput(inputId = "countryselect",label="Select a country:",choices=countrychoices)
)),
DTOutput("countrydata"),
leafletOutput("country_airports")
)
)
)
)
)
# Define server logic
server <- function(input, output) {
#----------COUNTRY FILTERING---------#
CountryData=reactive({
filteredData=subset(fullair3,Country == input$countryselect)
return(filteredData)
})
CountryDataTable=reactive({
filteredDataTable=subset(table2,Country==input$countryselect)
filteredDataTable$Country=NULL
return(filteredDataTable)
})
#-------------------COUNTRY PLOTS-------------------#
output$countrydata=renderDT({
data_table = CountryDataTable()
datatable(data_table,options=list(pageLength=5,
lengthMenu=c(5,10,15,20)
),rownames = FALSE)
})
output$country_airports=renderLeaflet({
data=CountryData()
pal=colorNumeric("Yellow",data$DestinationCount)
leaflet(data=data) %>%
addTiles(group="CartoDB.Positron") %>%
addProviderTiles(providers$CartoDB.Positron,
options = tileOptions(minZoom =0, maxZoom = 13),
group = "CartoDB.Positron") %>%
addCircles(radius = ~data$DestinationCount*1000,
weight = 1,
color = "black",
fillColor = ~pal(data$DestinationCount),
fillOpacity = 0.4,
popup = paste0("Airport Name: ", data$Name, "<br>",
"City: ", data$City, "<br>",
"Destination Count: ",data$DestinationCount,"<br>"
),
label = ~as.character(data$IATA),
group = "Points")
})
}
# Run the application
shinyApp(ui = ui, server = server)
有人对如何解决这个问题有任何建议吗?
我认为
fillOpacity = 0.4
太高,无法获得芝加哥附近点的透明度。我在下图中设置了透明度fillOpacity = 0.01
。如果 alpha 值较低,则需要更多数量的点才能使点完全不透明。我认为,例如,机场 ORD 的行数为 0.4 且超过 200 行,就达到了这个阈值。
您可以尝试解决这个问题,每个机场只绘制一个点(即数据集中只有一行)。
例如使用
fillOpacity = 0.4
并在 leaflet
函数之前添加此代码
data <- data %>%
dplyr::distinct(IATA, Latitude, Longitude, DestinationCount, Name, City)
我拿到了下图中的地图
在评论中回答您的进一步问题,似乎一种可能的方法是使用 z-index 参数,但我发现 SVG(如 Circles)不支持 z-index 并且顺序基于元素已添加到地图中。所以我尝试按以下方式更改上面的代码:
data <- data %>%
dplyr::distinct(IATA, Latitude, Longitude, DestinationCount, Name, City) %>%
dplyr::arrange(desc(DestinationCount))
得到了这个结果
您也可以尝试使用
addCircleMarkers
代替 addCircles
,仅更改 radius = ~data$DestinationCount*0.3
。如果放大得足够大,您会看到 ORD 和 MDW 没有重叠。