我已经收集了一个庞大的口袋妖怪数据集,并开始根据我建立的比率确定“十佳团队”的目标-口袋妖怪BST(基本统计总数:平均弱点)>。对于那些关心的人,我将平均弱点计算为每种类型的口袋妖怪的弱点的总和(0.25到飞行+ 1到水+ 2到钢铁+ 4到火等),然后将其除以18(游戏中可用的类型)。
[提供一个简单的例子-由以下三个口袋妖怪组成的团队:金勒,米米丘,马格尼宗,团队比率为1604.1365384615383。
由于这些数据将用于竞技比赛,因此我删除了所有未完全进化的神奇宝贝以及传奇/神话般的神奇宝贝。到目前为止,这是我的过程:
显然,此过程将花费很长时间。我想知道是否有一种更有效的方式来运行它。最后,请在下面查看我的代码:
import itertools
import pandas as pd
df = pd.read_csv("Downloads/pokemon.csv") # read in csv of fully-evolved Pokemon data
# list(df) # list of df column names - useful to see what data has been collected
df = df[df["is_legendary"] == 0] # remove legendary pokemon - many legendaries are allowed in competitive play
df = df[['abilities', # trim df to contain only the columns we care about
'against_bug',
'against_dark',
'against_dragon',
'against_electric',
'against_fairy',
'against_fight',
'against_fire',
'against_flying',
'against_ghost',
'against_grass',
'against_ground',
'against_ice',
'against_normal',
'against_poison',
'against_psychic',
'against_rock',
'against_steel',
'against_water',
'attack',
'defense',
'hp',
'name',
'sp_attack',
'sp_defense',
'speed',
'type1',
'type2']]
df["bst"] = df["hp"] + df["attack"] + df["defense"] + df["sp_attack"] + df["sp_defense"] + df["speed"] # calculate BSTs
df['average_weakness'] = (df['against_bug'] # calculates a Pokemon's 'average weakness' to other types
+ df['against_dark']
+ df['against_dragon']
+ df['against_electric']
+ df['against_fairy']
+ df['against_fight']
+ df['against_fire']
+ df['against_flying']
+ df['against_ghost']
+ df['against_grass']
+ df['against_ground']
+ df['against_ice']
+ df['against_normal']
+ df['against_poison']
+ df['against_psychic']
+ df['against_rock']
+ df['against_steel']
+ df['against_water']) / 18
df['bst-weakness-ratio'] = df['bst'] / df['average_weakness'] # ratio of BST:avg weakness - the higher the better
names = df["name"] # pull out list of all names for creating combinations
combinations = itertools.combinations(names, 6) # create all possible combinations of 6 pokemon teams
top_10_teams = [] # list for storing top 10 teams
for x in combinations:
ratio = sum(df.loc[df['name'].isin(x)]['bst-weakness-ratio']) # pull out sum of team's ratio
if(len(top_10_teams) != 10):
top_10_teams.append((x, ratio)) # first 10 teams will automatically populate list
else:
top_10_teams.append((x, ratio)) # add team to list
top_10_teams.sort(key=lambda x:x[1], reverse=True) # sort list by descending ratios
del top_10_teams[-1] # drop team with the lowest ratio - only top 10 remain in list
top_10_teams
我收集了一个大型的Pokemon数据集,我的目标是根据我建立的比率确定“十佳团队”-Pokemon BST(基本统计总数):平均弱点。对于那些...
在您的示例中,每个口袋妖怪都有bst_weakness-ratio,在计算团队价值时,您没有考虑到成员抵消彼此的弱点,而只是将6个成员的比率相加?如果是这样,最好的团队不应该是拥有6个最佳个人口袋妖怪的团队吗?我不明白为什么您需要这种组合。