我是Python和OpenCV的新手。我玩了一下卢卡斯 - 卡纳德的例子,你可以在下面看到。现在我制作了我的Raspberry PI盒子的照片,这段代码检测到5点(见图1)Lucas-Kanade-tracked-Points。在第二张图片中,我在盒子前面从左到右略微移动了一张纸。在那里,我看到,我的5个跟踪点可以被这张纸移动。这5点现在附在本文的长边(见图2)moved tracked points。怎么可能?为什么我能提出这一点?在我看来,当我把这张纸移到它们上面时,它们必须丢失。有人可以帮帮我吗?
最好的问候,汉兹
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
img = cv2.add(frame,mask)
cv2.imshow('frame',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()
我找到了解决方案。我必须检查下一点的prev点,就像在这个例子中,可以在这里找到https://github.com/opencv/opencv/blob/master/samples/python/lk_homography.py
这是相关的代码行:
def checkedTrace(img0, img1, p0, back_threshold = 1.0):
p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0-p0r).reshape(-1, 2).max(-1)
status = d < back_threshold
return p1, status