我正在尝试在 plotly 中创建一个分组条形图,但我似乎无法在一个组中为我的条形图着色(所以它们都是相同的颜色)。有谁知道如何巧妙地做到这一点?我想根据子类别为我的条形图着色(因此子类别中的所有条形图都有自己的颜色)。我试过在图表中添加轨迹,但没有成功。谢谢。
sample <- data.frame(
Category <- c("Furniture","Furniture","Furniture","Furniture",
"Office Supplies","Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Technology","Technology","Technology","Technology"),
SubCategory <- c("Bookcases","Chairs","Furnishings","Tables","Appliances","Art","Binders","Envelopes",
"Fasteners","Labels","Paper","Storage", "Supplies", "Accessories","Copiers","Machines",
"Phones"),
sales <- c(889222.51,920892.65,239840.16,445823.93,614737.91,225594.68,281494.68,104903.88,50156.06,44269.30,
150113.36,692903.08,152196.19,463383.33,965899.78,458655.43,1005525.38)
)
#plot code so far
sample %>%
plot_ly(
x = Category,
y = sales,
type = "bar",
group = SubCategory
)
以下是我到目前为止的内容,但着色不是基于分组。当我提供颜色变量时,它不会为 SubCategory 中的所有条形图着色相同的颜色。这是可能的错误吗?
使用
ggplot2
....
library(ggplot2)
library(cowplot) #ggplot2 white theme
sample <- data.frame(
Category <- c("Furniture","Furniture","Furniture","Furniture",
"Office Supplies","Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Technology","Technology","Technology","Technology"),
SubCategory <- c("Bookcases","Chairs","Furnishings","Tables","Appliances","Art","Binders","Envelopes",
"Fasteners","Labels","Paper","Storage", "Supplies", "Accessories","Copiers","Machines",
"Phones"),
sales <- c(889222.51,920892.65,239840.16,445823.93,614737.91,225594.68,281494.68,104903.88,50156.06,44269.30,
150113.36,692903.08,152196.19,463383.33,965899.78,458655.43,1005525.38)
)
colnames(sample)<-c("category","subcategory","Sales")
ggplot(sample, aes(category, Sales)) +
geom_bar(aes(fill = category, color = subcategory), position = "dodge", stat = "identity")+scale_color_manual(values = c(rep("white", 17)))+theme(legend.position = "none")
现在使用
plotly
的ggplotly
plot<-ggplot(sample, aes(category, Sales)) +
geom_bar(aes(fill = category, color=subcategory), position = "dodge", stat="identity")+scale_color_manual(values=c(rep("white", 17)))+theme(legend.position="none")
ggplotly(plot)
最后,用原装
plotly
sample <- data.frame(
Category <- c("Furniture","Furniture","Furniture","Furniture",
"Office Supplies","Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Technology","Technology","Technology","Technology"),
SubCategory <- c("Bookcases","Chairs","Furnishings","Tables","Appliances","Art","Binders","Envelopes",
"Fasteners","Labels","Paper","Storage", "Supplies", "Accessories","Copiers","Machines",
"Phones"),
sales <- c(889222.51,920892.65,239840.16,445823.93,614737.91,225594.68,281494.68,104903.88,50156.06,44269.30,
150113.36,692903.08,152196.19,463383.33,965899.78,458655.43,1005525.38)
)
sample %>%
plot_ly(
x = SubCategory,
y = sales,
type = "bar",
group = Category
)
虽然我知道这个问题需要一个
plotly
解决方案,但我想在我的首选包中提出一个非常简单的解决方案(我确定还有很多其他解决方案)用于图表 - ggplot2
!
library(ggplot2)
sample <- data.frame(
Category = c("Furniture","Furniture","Furniture","Furniture",
"Office Supplies","Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Technology","Technology","Technology","Technology"),
SubCategory = c("Bookcases","Chairs","Furnishings","Tables","Appliances","Art","Binders","Envelopes",
"Fasteners","Labels","Paper","Storage", "Supplies", "Accessories","Copiers","Machines",
"Phones"),
sales = c(889222.51,920892.65,239840.16,445823.93,614737.91,225594.68,281494.68,104903.88,50156.06,44269.30,
150113.36,692903.08,152196.19,463383.33,965899.78,458655.43,1005525.38)
)
ggplot(sample,aes(x=Category,y=sales)) +
geom_bar(stat="identity",width=0.5, position="dodge", aes(fill=SubCategory),
color="black")
详细说明@petergensler 的非常全面的答案,到目前为止
group
已被弃用。 Plotly 现在更喜欢用户使用 plotly::group_by(),它足够简单:
sample <- data.frame(
Category <- c("Furniture","Furniture","Furniture","Furniture",
"Office Supplies","Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies",
"Office Supplies", "Technology","Technology","Technology","Technology"),
SubCategory <- c("Bookcases","Chairs","Furnishings","Tables","Appliances","Art","Binders","Envelopes",
"Fasteners","Labels","Paper","Storage", "Supplies", "Accessories","Copiers","Machines",
"Phones"),
sales <- c(889222.51,920892.65,239840.16,445823.93,614737.91,225594.68,281494.68,104903.88,50156.06,44269.30,
150113.36,692903.08,152196.19,463383.33,965899.78,458655.43,1005525.38)
)
sample %>%
plot_ly(
x = SubCategory,
y = sales,
type = "bar"
) %>%
plotly::group_by(Category)
请注意,plotly 的 group_by() 可能会以更流行的 dplyr::group_by() 方式导致一些令人沮丧的包问题,所以最好具体一点。