我的数据格式是用apache节俭定义的,代码是由scrooge生成的。我使用镶木地板将其存储在spark中,非常类似于此blog中的解释。
我可以很容易地将数据读回到Dataframe中,只需这样做:
val df = sqlContext.read.parquet("/path/to/data")
而且我可以在RDD中阅读它并进行更多的体操:
def loadRdd[V <: TBase[_, _]](inputDirectory: String, vClass: Class[V]): RDD[V] = {
implicit val ctagV: ClassTag[V] = ClassTag(vClass)
ParquetInputFormat.setReadSupportClass(jobConf, classOf[ThriftReadSupport[V]])
ParquetThriftInputFormat.setThriftClass(jobConf, vClass)
val rdd = sc.newAPIHadoopFile(
inputDirectory, classOf[ParquetThriftInputFormat[V]], classOf[Void], vClass, jobConf)
rdd.asInstanceOf[NewHadoopRDD[Void, V]].values
}
loadRdd("/path/to/data", classOf[MyThriftClass])
我的问题是:如何在Spark 1.6发行的新Dataset API中访问该数据?我想要的原因是数据集api的优点:以相同的数据帧速度输入安全性。
我知道需要某种编码器,并且已经为原始类型和案例类提供了这些编码器,但是我所拥有的是节俭生成的代码(java或scala的一种,任何一种都可以满足要求),它看起来确实是很像案例类,但实际上不是一个案例。
我尝试了明显的选项,但没有用:
val df = sqlContext.read.parquet("/path/to/data")
df.as[MyJavaThriftClass]
<console>:25: error: Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing sqlContext.implicits._ Support for serializing other types will be added in future releases.
df.as[MyScalaThriftClass]
scala.ScalaReflectionException: <none> is not a term
at scala.reflect.api.Symbols$SymbolApi$class.asTerm(Symbols.scala:199)
at scala.reflect.internal.Symbols$SymbolContextApiImpl.asTerm(Symbols.scala:84)
at org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$extractorFor(ScalaReflection.scala:492)
at org.apache.spark.sql.catalyst.ScalaReflection$.extractorsFor(ScalaReflection.scala:394)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$.apply(ExpressionEncoder.scala:54)
at org.apache.spark.sql.SQLImplicits.newProductEncoder(SQLImplicits.scala:41)
... 48 elided
df.as[MyScalaThriftClass.Immutable]
java.lang.UnsupportedOperationException: No Encoder found for org.apache.thrift.protocol.TField
- field (class: "org.apache.thrift.protocol.TField", name: "field")
- array element class: "com.twitter.scrooge.TFieldBlob"
- field (class: "scala.collection.immutable.Map", name: "_passthroughFields")
- root class: "com.worldsense.scalathrift.ThriftRange.Immutable"
at org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$extractorFor(ScalaReflection.scala:597)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$org$apache$spark$sql$catalyst$ScalaReflection$$extractorFor$1.apply(ScalaReflection.scala:509)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$org$apache$spark$sql$catalyst$ScalaReflection$$extractorFor$1.apply(ScalaReflection.scala:502)
at scala.collection.immutable.List.flatMap(List.scala:327)
at org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$extractorFor(ScalaReflection.scala:502)
at org.apache.spark.sql.catalyst.ScalaReflection$.toCatalystArray$1(ScalaReflection.scala:419)
at org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$extractorFor(ScalaReflection.scala:537)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$org$apache$spark$sql$catalyst$ScalaReflection$$extractorFor$1.apply(ScalaReflection.scala:509)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$org$apache$spark$sql$catalyst$ScalaReflection$$extractorFor$1.apply(ScalaReflection.scala:502)
at scala.collection.immutable.List.flatMap(List.scala:327)
at org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$extractorFor(ScalaReflection.scala:502)
at org.apache.spark.sql.catalyst.ScalaReflection$.extractorsFor(ScalaReflection.scala:394)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$.apply(ExpressionEncoder.scala:54)
at org.apache.spark.sql.SQLImplicits.newProductEncoder(SQLImplicits.scala:41)
... 48 elided
[似乎用Thrift生成的works fine不整形,我想知道是否可以用它来生成当前的编码器api可以接受的东西。
有任何提示吗?
应该有可能通过将Encoders.bean(My.getClass)
作为显式隐式传递来解决。
示例:df.as[MyJavaThriftClass](Encoders.bean(MyJavaThriftClass.getClass))