Tensorflow:如何在Tensorboard中显示自定义图像(例如Matplotlib图)

问题描述 投票:27回答:4

Tensorboard自述文件的Image Dashboard部分说:

由于图像仪表板支持任意png,因此您可以使用它将自定义可视化(例如matplotlib散点图)嵌入到TensorBoard中。

我看到如何将pyplot图像写入文件,作为张量读回,然后与tf.image_summary()一起使用将其写入TensorBoard,但是自述文件中的这一陈述表明存在更直接的方式。在那儿?如果是这样,是否有任何进一步的文档和/或示例如何有效地执行此操作?

python matplotlib tensorflow tensorboard
4个回答
40
投票

如果将图像放在内存缓冲区中,则很容易做到。下面,我展示了一个示例,其中将pyplot保存到缓冲区,然后转换为TF图像表示,然后将其发送到图像摘要。

import io
import matplotlib.pyplot as plt
import tensorflow as tf


def gen_plot():
    """Create a pyplot plot and save to buffer."""
    plt.figure()
    plt.plot([1, 2])
    plt.title("test")
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    return buf


# Prepare the plot
plot_buf = gen_plot()

# Convert PNG buffer to TF image
image = tf.image.decode_png(plot_buf.getvalue(), channels=4)

# Add the batch dimension
image = tf.expand_dims(image, 0)

# Add image summary
summary_op = tf.summary.image("plot", image)

# Session
with tf.Session() as sess:
    # Run
    summary = sess.run(summary_op)
    # Write summary
    writer = tf.train.SummaryWriter('./logs')
    writer.add_summary(summary)
    writer.close()

这提供了以下TensorBoard可视化:

enter image description here


7
投票

下一个脚本不使用中间RGB / PNG编码。它还解决了执行期间额外操作构造的问题,重复使用单个摘要。

在执行期间,该图的大小预计保持不变

有效的解决方案:

import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np

def get_figure():
  fig = plt.figure(num=0, figsize=(6, 4), dpi=300)
  fig.clf()
  return fig


def fig2rgb_array(fig, expand=True):
  fig.canvas.draw()
  buf = fig.canvas.tostring_rgb()
  ncols, nrows = fig.canvas.get_width_height()
  shape = (nrows, ncols, 3) if not expand else (1, nrows, ncols, 3)
  return np.fromstring(buf, dtype=np.uint8).reshape(shape)


def figure_to_summary(fig):
  image = fig2rgb_array(fig)
  summary_writer.add_summary(
    vis_summary.eval(feed_dict={vis_placeholder: image}))


if __name__ == '__main__':
      # construct graph
      x = tf.Variable(initial_value=tf.random_uniform((2, 10)))
      inc = x.assign(x + 1)

      # construct summary
      fig = get_figure()
      vis_placeholder = tf.placeholder(tf.uint8, fig2rgb_array(fig).shape)
      vis_summary = tf.summary.image('custom', vis_placeholder)

      with tf.Session() as sess:
        tf.global_variables_initializer().run()
        summary_writer = tf.summary.FileWriter('./tmp', sess.graph)

        for i in range(100):
          # execute step
          _, values = sess.run([inc, x])
          # draw on the plot
          fig = get_figure()
          plt.subplot('111').scatter(values[0], values[1])
          # save the summary
          figure_to_summary(fig)

7
投票

我的回答有点晚了。使用tf-matplotlib,简单的散点图可归结为:

import tensorflow as tf
import numpy as np

import tfmpl

@tfmpl.figure_tensor
def draw_scatter(scaled, colors): 
    '''Draw scatter plots. One for each color.'''  
    figs = tfmpl.create_figures(len(colors), figsize=(4,4))
    for idx, f in enumerate(figs):
        ax = f.add_subplot(111)
        ax.axis('off')
        ax.scatter(scaled[:, 0], scaled[:, 1], c=colors[idx])
        f.tight_layout()

    return figs

with tf.Session(graph=tf.Graph()) as sess:

    # A point cloud that can be scaled by the user
    points = tf.constant(
        np.random.normal(loc=0.0, scale=1.0, size=(100, 2)).astype(np.float32)
    )
    scale = tf.placeholder(tf.float32)        
    scaled = points*scale

    # Note, `scaled` above is a tensor. Its being passed `draw_scatter` below. 
    # However, when `draw_scatter` is invoked, the tensor will be evaluated and a
    # numpy array representing its content is provided.   
    image_tensor = draw_scatter(scaled, ['r', 'g'])
    image_summary = tf.summary.image('scatter', image_tensor)      
    all_summaries = tf.summary.merge_all() 

    writer = tf.summary.FileWriter('log', sess.graph)
    summary = sess.run(all_summaries, feed_dict={scale: 2.})
    writer.add_summary(summary, global_step=0)

执行时,会在Tensorboard中生成以下图表

请注意,tf-matplotlib负责评估任何张量输入,避免pyplot线程问题并支持运行时关键绘图的blitting。


1
投票

这打算完成Andrzej Pronobis的回答。紧接着他的好帖子,我设置了这个最小的工作示例:

    plt.figure()
    plt.plot([1, 2])
    plt.title("test")
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    image = tf.image.decode_png(buf.getvalue(), channels=4)
    image = tf.expand_dims(image, 0)
    summary = tf.summary.image("test", image, max_outputs=1)
    writer.add_summary(summary, step)

作家是tf.summary.FileWriter的一个例子。这给了我以下错误:AttributeError:'Tensor'对象没有属性'value'this github post有解决方案:在添加到writer之前,必须评估摘要(转换为字符串)。所以我的工作代码保持如下(只需在最后一行添加.eval()调用):

    plt.figure()
    plt.plot([1, 2])
    plt.title("test")
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    image = tf.image.decode_png(buf.getvalue(), channels=4)
    image = tf.expand_dims(image, 0)
    summary = tf.summary.image("test", image, max_outputs=1)
    writer.add_summary(summary.eval(), step)

这可能足够短,可以评论他的答案,但这些很容易被忽视(我可能会做其他不同的事情),所以在这里,希望它有所帮助!

干杯, 安德烈斯

© www.soinside.com 2019 - 2024. All rights reserved.