具有预定义回报和 cov 矩阵的投资组合分析

问题描述 投票:0回答:1

我在 r 中使用

PortfolioAnalytics
并尝试使用预定义的协方差并返回矩阵。

例如,我的资产的预计回报是

returns <- matrix(c(0.316, 0.322, 0.288), ncol = 3)

并且可能的协方差矩阵估计如下:

cov_matrix <- matrix(c(0.240, 0, 0,
                   0, 0.217, 0,
                   0, 0, 0.202), ncol = 3, nrow = 3)

我尝试过以下几个示例,例如在没有 xts 对象的情况下在 PortfolioAnalytics 中创建有效边界在 Portfolio Analytics 包中自定义预期收益,但似乎在这两种情况下,收益的时间序列仍然是提供并且时刻仍然是估计的,而我的投资组合的预期回报和协方差矩阵已经给出。

按照示例,我尝试通过以下方式将我的数据强制到 xts(假设这是我需要做的):

date <- "2020/03/20"
date <- as.Date(date, "%Y/%m/%d")
date
rownames(returns) <- date

returns <- xts(returns, order.by = date)

pf <- portfolio.spec(assets = colnames(returns))
pf <- add.constraint(portfolio = pf, type = "full_investment")
pf <- add.constraint(portfolio = pf, type = "long_only")
pf <- add.objective(portfolio = pf, type = "return", name = "mean")
pf
num_assets <- ncol(returns)
momentargs <- list()
momentargs$mu <- returns
momentargs$sigma <- cov_matrix
momentargs$m3 <- matrix(0, nrow = num_assets, ncol = num_assets ^ 2)
momentargs$m4 <- matrix(0, nrow = num_assets, ncol = num_assets ^ 3)

o <- optimize.portfolio(R = returns, portfolio = pf, momentargs = momentargs)

我不断得到

 Leverage constraint min_sum and max_sum are restrictive, 
              consider relaxing. e.g. 'full_investment' constraint should be min_sum=0.99 and max_sum=1.01
Error in `colnames<-`(`*tmp*`, value = colnames(seed)) : 
  attempt to set 'colnames' on an object with less than two dimensions

我想我确定我错过了一些东西。

r finance quantitative-finance portfolio r-portfolioanalytics
1个回答
© www.soinside.com 2019 - 2024. All rights reserved.