尝试使用 xts 对象进行往返(写入/读取)。 read.zoo() 返回一个数据框!将其转换为 xts 失败。
如何使其成为 xts 对象?
library(quantmod)
from<-"2016-01-01" # leap year
to<-"2017-01-01"
symbol<-"AAPL"
getSymbols(symbol,from=from,to=to)
class(AAPL)
write.zoo(AAPL,file="newapple.txt",sep=",")
x<-read.zoo("newapple.txt")
class(x)
x<-as.xts(x,RECLASS=TRUE) # has errors
# write.zoo(x,file="newerapple.txt",sep=",") # crashes
运行
read.zoo()
行时出现错误。
x <- read.zoo("newapple.txt")
> Error in read.zoo("newapple2.txt") :
index has 253 bad entries at data rows: 1 2 3 ...
使用
readr::write_csv()
和readr::read_csv()
,我完成了往返。
library(quantmod)
library(tidyverse)
library(zoo)
from <- "2016-01-01" # leap year
to <- "2017-01-01"
symbol <- "AAPL"
getSymbols(symbol, from = from, to = to)
#> [1] "AAPL"
class(AAPL)
#> [1] "xts" "zoo"
AAPL |>
as_tibble(rownames = "index") |>
write_csv("newapple2.txt")
x <- read_csv("newapple2.txt")
class(x)
#> [1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
as.xts(x, RECLASS = TRUE)
#> AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
#> 2016-01-04 25.6525 26.3425 25.5000 26.3375 270597600 24.00906
#> 2016-01-05 26.4375 26.4625 25.6025 25.6775 223164000 23.40741
#> 2016-01-06 25.1400 25.5925 24.9675 25.1750 273829600 22.94933
#> 2016-01-07 24.6700 25.0325 24.1075 24.1125 324377600 21.98078
#> 2016-01-08 24.6375 24.7775 24.1900 24.2400 283192000 22.09699
#> 2016-01-11 24.7425 24.7650 24.3350 24.6325 198957600 22.45480
#> 2016-01-12 25.1375 25.1725 24.7100 24.9900 196616800 22.78069
#> 2016-01-13 25.0800 25.2975 24.3250 24.3475 249758400 22.19499
#> 2016-01-14 24.4900 25.1200 23.9350 24.8800 252680400 22.68042
#> 2016-01-15 24.0500 24.4275 23.8400 24.2825 319335600 22.13574
#> ...
#> 2016-12-16 29.1175 29.1250 28.9125 28.9925 177404400 27.01738
#> 2016-12-19 28.9500 29.3450 28.9375 29.1600 111117600 27.17346
#> 2016-12-20 29.1850 29.3750 29.1700 29.2375 85700000 27.24568
#> 2016-12-21 29.2000 29.3500 29.1950 29.2650 95132800 27.27131
#> 2016-12-22 29.0875 29.1275 28.9100 29.0725 104343600 27.09193
#> 2016-12-23 28.8975 29.1300 28.8975 29.1300 56998000 27.14550
#> 2016-12-27 29.1300 29.4500 29.1225 29.3150 73187600 27.31790
#> 2016-12-28 29.3800 29.5050 29.0500 29.1900 83623600 27.20142
#> 2016-12-29 29.1125 29.2775 29.1000 29.1825 60158000 27.19443
#> 2016-12-30 29.1625 29.3000 28.8575 28.9550 122345200 26.98243