如何检索从Spark UI写入的输出大小和记录等指标?

问题描述 投票:9回答:1

如何在任务或作业完成后立即在控制台(Spark Shell或Spark提交作业)上收集这些指标。

我们使用Spark将数据从Mysql加载到Cassandra并且它非常庞大(例如:~200 GB和600M行)。当任务完成后,我们想验证火花过程究竟完成了多少行?我们可以从Spark UI获取数字,但是如何从spark shell或spark-submit作业中检索该数字(“Output Records Written”)。

示例命令从Mysql加载到Cassandra。

val pt = sqlcontext.read.format("jdbc").option("url", "jdbc:mysql://...:3306/...").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "payment_types").option("user", "hadoop").option("password", "...").load()

pt.save("org.apache.spark.sql.cassandra",SaveMode.Overwrite,options = Map( "table" -> "payment_types", "keyspace" -> "test"))

我想在上面的任务中检索所有Spark UI指标,主要是输出大小和记录写入。

请帮忙。

谢谢你的时间!

apache-spark apache-spark-sql spark-dataframe spark-cassandra-connector codahale-metrics
1个回答
6
投票

找到了答案。您可以使用SparkListener获取统计信息。

如果您的作业没有输入或输出指标,则可能会获得None.get异常,您可以通过提供stmt来安全地忽略这些异常。

sc.addSparkListener(new SparkListener() {
  override def onTaskEnd(taskEnd: SparkListenerTaskEnd) {
    val metrics = taskEnd.taskMetrics
    if(metrics.inputMetrics != None){
      inputRecords += metrics.inputMetrics.get.recordsRead}
    if(metrics.outputMetrics != None){
      outputWritten += metrics.outputMetrics.get.recordsWritten }
  }
})

请查看以下示例。

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import com.datastax.spark.connector._
import org.apache.spark.sql._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.scheduler.{SparkListener, SparkListenerTaskEnd}

val conf = new SparkConf()
.set("spark.cassandra.connection.host", "...")
.set("spark.driver.allowMultipleContexts","true")
.set("spark.master","spark://....:7077")
.set("spark.driver.memory","1g")
.set("spark.executor.memory","10g")
.set("spark.shuffle.spill","true")
.set("spark.shuffle.memoryFraction","0.2")
.setAppName("CassandraTest")
sc.stop
val sc = new SparkContext(conf)
val sqlcontext = new org.apache.spark.sql.SQLContext(sc)

var outputWritten = 0L

sc.addSparkListener(new SparkListener() {
  override def onTaskEnd(taskEnd: SparkListenerTaskEnd) {
    val metrics = taskEnd.taskMetrics
    if(metrics.inputMetrics != None){
      inputRecords += metrics.inputMetrics.get.recordsRead}
    if(metrics.outputMetrics != None){
      outputWritten += metrics.outputMetrics.get.recordsWritten }
  }
})

val bp = sqlcontext.read.format("jdbc").option("url", "jdbc:mysql://...:3306/...").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "bucks_payments").option("partitionColumn","id").option("lowerBound","1").option("upperBound","14596").option("numPartitions","10").option("fetchSize","100000").option("user", "hadoop").option("password", "...").load()
bp.save("org.apache.spark.sql.cassandra",SaveMode.Overwrite,options = Map( "table" -> "bucks_payments", "keyspace" -> "test"))

println("outputWritten",outputWritten)

结果:

scala> println("outputWritten",outputWritten)
(outputWritten,16383)
© www.soinside.com 2019 - 2024. All rights reserved.