我正在尝试使用autograd库中的grad函数来查找函数的第n个导数。 grad(x)给出一阶导数,但它不允许变量查找,例如三阶导数,等等。有没有办法我可以递归执行此操作,以便用户可以呈现所需的导数阶看?
import matplotlib.pyplot as plt
from autograd import grad
import autograd.numpy as np
# a named Python function
g = lambda w: w**2
w_vals = np.linspace(-5,5,200)
nabla_g = grad(g) #A function here that can find the nth derivative
# evaluate gradient over input range
g_vals = [g(v) for v in w_vals]
grad_vals = [nabla_g(v) for v in w_vals]
非常简单。您应该嵌套grad函数
# import matplotlib.pyplot as plt
from autograd import grad
import autograd.numpy as np
def my_grad(fun, ord):
for i in range(ord):
fun = grad(fun)
return fun
# a named Python function
g = lambda w: w**3
# derivative x^3 = 3x^2
# derivative 3x^2 = 6x
# derivative 6x = 6
w_vals = np.linspace(-5,5,200)
nabla_g = my_grad(g, 3) # recursive call to grad lead to 3° derivative
g_vals = [g(v) for v in w_vals]
grad_vals = [nabla_g(v) for v in w_vals]
print(grad_vals) #should output 6 for every input
我还开发了my_grad的递归版本:
def my_grad(fun, ord):
if ord == 0:
return fun
return my_grad(grad(fun), ord-1)