有人可以告诉我为什么我的
go.Choropleth
代码的这一部分不起作用吗?
我正在尝试让我的国家的边界更粗、更黑,但它不起作用,我不知道这些布局规范中还可能缺少什么。这是我的地图代码部分,在其下面您可以看到生成的地图的放大部分。请注意,该国的边界仍然又细又灰——为什么它没有改变?
map_fig_layout = {'coloraxis_colorbar': {'title': 'População (%)',
'thickness': 20,
'ticklabelposition':'outside bottom'},
'margin': {'r':0, 'l':0, 't':0, 'b':0},
'template': 'plotly_dark',
'geo':{'projection': go.layout.geo.Projection(type ='natural earth'),
'landcolor': '#262626',
'showcountries':True,
'showsubunits':True,
'subunitcolor': 'black',
'subunitwidth': 4,
'resolution':110,
'visible':True,
'countrywidth': 4,
'countrycolor' : 'black'},
'uirevision':'not_tracked_key'}
map_graph = go.Figure({'data':[ go.Choropleth(locations = dff['Code'],
z = dff['população_%'], # a column of dff
hovertext = dff['Entity'],
zmin = 0,
zmax = 100,
colorscale = make_colorscale( ['#F53347','#E6C730','#2FF5A8'] ),
geo = 'geo') ],
'layout': map_fig_layout})
尝试将此行添加到您的代码中:
fig.update_traces(marker_line_width=2.0, selector=dict(type='choropleth'))
或者根据您的情况:
map_graph.update_traces(marker_line_width=2.0, selector=dict(type='choropleth'))
如果需要,您还可以控制不透明度:
例如,
from urllib.request import urlopen
import json
with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:
counties = json.load(response)
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv",
dtype={"fips": str})
import plotly.express as px
fig = px.choropleth(df, geojson=counties, locations='fips', color='unemp',
color_continuous_scale="Viridis",
range_color=(0, 12),
scope="usa",
labels={'unemp':'unemployment rate'}
)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.update_traces(marker_line_width=3.0, marker_opacity=0.6, selector=dict(type='choropleth'))
fig.show()
https://plotly.com/python/reference/choropleth/#choropleth-marker
import kaggle.cli
import sys, requests
import pandas as pd
from pathlib import Path
from zipfile import ZipFile
import urllib
import plotly.graph_objects as go
from plotly.colors import make_colorscale
# fmt: off
# download data set
url = "https://www.kaggle.com/mohaiminul101/population-growth-annual"
sys.argv = [sys.argv[0]] + f"datasets download {urllib.parse.urlparse(url).path[1:]}".split(" ")
kaggle.cli.main()
zfile = ZipFile(f'{urllib.parse.urlparse(url).path.split("/")[-1]}.zip')
dfs = {f.filename: pd.read_csv(zfile.open(f)) for f in zfile.infolist()}
# fmt: on
dff = dfs["world_population_growth.csv"].rename(
columns={"Country Code": "Code", "2019": "população_%", "Country Name": "Entity"}
)
dff["população_%"] = dff["população_%"] * 100
map_fig_layout = {
"coloraxis_colorbar": {
"title": "População (%)",
"thickness": 20,
"ticklabelposition": "outside bottom",
},
"margin": {"r": 0, "l": 0, "t": 0, "b": 0},
"template": "plotly_dark",
"geo": {
"projection": go.layout.geo.Projection(type="natural earth"),
"resolution": 110,
"visible": True,
},
"uirevision": "not_tracked_key",
}
map_graph = go.Figure(
{
"data": [
go.Choropleth(
locations=dff["Code"],
z=dff["população_%"], # a column of dff
hovertext=dff["Entity"],
zmin=0,
zmax=100,
marker={"line":{"width":4, "color":"black"}},
colorscale=make_colorscale(["#F53347", "#E6C730", "#2FF5A8"]),
)
],
"layout": map_fig_layout,
}
)
map_graph