我学习“深入学习”pytorch版本,在https://d2l.ai/chapter_preliminaries/calculus.html,我使用了“jupyter笔记本”命令,并在jupyter中运行了pytorch代码,一切运行正常,我将pytorch代码重写成了1.py,这样可以方便的调试pytorch代码,这里是我的1.py代码
#%matplotlib inline
import os
import numpy as np
from matplotlib_inline import backend_inline
from d2l import torch as d2l
def f(x):
return 3 * x ** 2 - 4 * x
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1
def use_svg_display(): #@save
"""使用svg格式在Jupyter中显示绘图"""
backend_inline.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)): #@save
"""设置matplotlib的图表大小"""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize
#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()
#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""绘制数据点"""
if legend is None:
legend = []
set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()
# 如果X有一个轴,输出True
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
我运行命令 “conda 激活 d2l” 然后运行 “蟒蛇1.py” 它显示错误:
⇒ conda activate d2l
lee@Princekin-MacbookPro:~/Desktop/Artificial_Intelligence/DEEP_LEARNING/DIVE_INTO_DEEP_LEARNING_PyTorch/task/2.4|main⚡
⇒ python 1.py
h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003
Traceback (most recent call last):
File "/Users/lee/Desktop/Artificial_Intelligence/DEEP_LEARNING/DIVE_INTO_DEEP_LEARNING_PyTorch/task/2.4/1.py", line 79, in <module>
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
File "/Users/lee/Desktop/Artificial_Intelligence/DEEP_LEARNING/DIVE_INTO_DEEP_LEARNING_PyTorch/task/2.4/1.py", line 54, in plot
axes = axes if axes else d2l.plt.gca()
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/matplotlib/pyplot.py", line 2309, in gca
return gcf().gca()
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/matplotlib/pyplot.py", line 906, in gcf
return figure()
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/matplotlib/_api/deprecation.py", line 454, in wrapper
return func(*args, **kwargs)
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/matplotlib/pyplot.py", line 840, in figure
manager = new_figure_manager(
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/matplotlib/pyplot.py", line 383, in new_figure_manager
_warn_if_gui_out_of_main_thread()
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/matplotlib/pyplot.py", line 361, in _warn_if_gui_out_of_main_thread
if _get_required_interactive_framework(_get_backend_mod()):
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/matplotlib/pyplot.py", line 208, in _get_backend_mod
switch_backend(rcParams._get("backend"))
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/matplotlib/pyplot.py", line 356, in switch_backend
install_repl_displayhook()
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/matplotlib/pyplot.py", line 157, in install_repl_displayhook
ip.enable_gui(ipython_gui_name)
File "/Users/lee/miniconda3/envs/d2l/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 3607, in enable_gui
raise NotImplementedError('Implement enable_gui in a subclass')
NotImplementedError: Implement enable_gui in a subclass
lee@Princekin-MacbookPro:~/Desktop/Artificial_Intelligence/DEEP_LEARNING/DIVE_INTO_DEEP_LEARNING_PyTorch/task/2.4|main⚡
⇒
我不知道如何解决这个问题,如果您有任何想法,我们将不胜感激,谢谢
经过多次尝试,我找到了解决方案,
#%matplotlib inline
import os
import numpy as np
from matplotlib_inline import backend_inline
from d2l import torch as d2l
import matplotlib.pyplot as plt
def f(x):
return 3 * x ** 2 - 4 * x
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1
def use_svg_display(): #@save
"""使用svg格式在Jupyter中显示绘图"""
backend_inline.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)): #@save
"""设置matplotlib的图表大小"""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize
#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()
#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""绘制数据点"""
if legend is None:
legend = []
set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()
# 如果X有一个轴,输出True
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
plt.show()
然后就成功了,并展示了图,希望对大家有帮助!