方差分析显著性可视化的重复实验数据(ggplot)。

问题描述 投票:0回答:1

我正在努力获得我的实验重复数据的意义值。实验一式两份,每个物种,我想比较每个物种之间的每个时间点的值有多大意义。我正试图做双向方差分析...

this is what i get now as my result- but i cannot see the significance at each time point as a different value..

library(ggplot2)
library(reshape)
library(dplyr)
abs2.melt<-melt(abs2,
                id.vars='Time',
                measure.vars=c('WT','WT.1','DsigB','DsigB.1','DrsbR','DrsbR.1'))
print(abs2.melt)
abs2.melt.mod<-abs2.melt %>%
  separate(col=variable,into=c('Species'),sep='\\.')
print(abs2.melt.mod)
ggplot(abs2.melt.mod,aes(x=Time,y=value,group=Species))+
  stat_summary(
    fun =mean,
    geom="line",
    aes(color=Species))+
  stat_summary(
    fun=mean,
    geom="point")+
  stat_summary(
    fun.data=mean_cl_boot,
    geom='errorbar',
    width=2)+
  theme_bw()+
  xlab("Time")+
  ylab("OD600")+
  labs(title="Growth Curve of Mutant Strains")
summary(abs2.melt.mod)
print(abs2.melt.mod)
###SD and mean values
as.data.frame<-abs2.melt.mod %>% group_by(Species,Time) %>% 
  summarize(mean.val=mean(value), sd.val=sd(value))
anova1<-aov(value~Species,data=abs2.melt.mod)
##statistical significance?
print(as.data.frame)
anova1<-aov(Time~Species+value,data=abs2.melt.mod)
summary(anova1)

My data that was melted consisting of 2 replicate samples taken at each time point (30min,60min...)

r ggplot2 dplyr anova
1个回答
0
投票

模拟的东西,看起来像你的数据

set.seed(111)
df = expand.grid(rep=1:3,Time=1:5,Species=letters[1:3])
df$value = 0.5*df$Time + rnorm(nrow(df))
df$Time = factor(df$Time)

然后我们绘制,允许每个时间点的比较。

library(ggplot2)
ggplot(df,aes(x=Time,y=value,col=Species)) + 
stat_summary(fun.data="mean_sdl",position=position_dodge(width=0.5))

enter image description here

或错误条,我认为看起来很糟糕。

ggplot(df,aes(x=Time,y=value,col=Species))+
stat_summary(fun.data="mean_sdl",position=position_dodge(width=0.5),
geom="errorbar",width=0.4)

enter image description here由于你的数据点不多,所以没有必要做一个boxplot, 所以你可以试试像上面这样的东西。

© www.soinside.com 2019 - 2024. All rights reserved.