并行 Haskell。对生产者进行速率限制

问题描述 投票:0回答:3

在 Haskell 中的并行和并发编程中,Simon Marlow 基于以下数据以及一些生产者和消费者提供了

Stream a

data IList a
  = Nil
  | Cons a (IVar (IList a))

type Stream a = IVar (IList a)

streamFromList :: NFData a => [a] -> Par (Stream a)
streamFromList xs = do
      var <- new
      fork $ loop xs var
      return var
    where
      loop [] var = put var Nil
      loop (x:xs) var = do
        tail <- new
        put var (Cons x tail)
        loop xs tail

后来,他提到了这种方法的缺点并提出了解决方案:

在我们之前的例子中,消费者比生产者更快。相反,如果生产者比消费者更快,那么就没有什么可以阻止生产者远远领先于消费者并在内存中建立一条长的 IList 链。这是不可取的,因为大型堆数据结构会因垃圾收集而产生开销,因此我们可能希望对生产者进行速率限制,以避免其超前。有一个技巧可以为流 API 添加一些自动速率限制。它需要向

IList
类型添加另一个构造函数:

data IList a
    = Nil
    | Cons a (IVar (IList a))
    | Fork (Par ()) (IList a)

然而,他并没有完成这个方法:

我将把这个想法的其余实现作为练习,让您自己尝试。看看是否可以修改

streamFromList
streamFold
streamMap
以合并
Fork
构造函数。块大小和分叉距离应该是生产者的参数(
streamFromList
streamMap
)。

同样的问题已在邮件列表中被问过,但没有人给出答案。

那么如何限制生产者的速率呢?

haskell parallel-processing monads
3个回答
7
投票

重要的部分在于

loop
函数:

  loop [] var = put var Nil
  loop (x:xs) var = do
    tail <- new
    put var (Cons x tail)
    loop xs tail

我们需要添加分叉距离

f
和块大小
c
作为参数:

  loop _ _ [] var = put var Nil
  loop 0 c (x:xs) var = -- see below
  loop f c (x:xs) var = do
    tail <- new
    put var (Cons x tail)
    loop (f-1) c xs tail

叉子距离在每次迭代中都会减少。当货叉距离为零时我们需要做什么?我们提供一个

Fork op t
,其中
op
继续生成列表:

  loop 0 c (x:xs) var = do
    tail <- new
    let op = loop c xs tail
    put var (Fork op (Cons x tail))

请注意,如果列表为空,我们不会使用

Fork
。这是可能的,但有点愚蠢,毕竟已经没有什么可生产的了。更改
streamFromList
现在很简单:

streamFromList :: NFData a => Int -> Int -> [a] -> Par (Stream a)
streamFromList f c xs = do
  var <- new                            
  fork $ loop f c xs var                 
  return var 

现在,为了使用它,我们需要更改

case
中的
streamFold

streamFold :: (a -> b -> a) -> a -> Stream b -> Par a
streamFold fn acc instrm = acc `seq` do
  ilst <- get instrm
  case ilst of
    Cons h t          -> streamFold fn (fn acc h) t
    Fork p (Cons h t) -> -- see below
    _                 -> return acc

请记住,我们的

Fork
中的
streamFromList
中不允许有空列表,但以防万一我们通过通配符匹配它(和
Nil
)。

如果遇到有数据的

Fork
我们该怎么办?首先,我们需要使用
fork
来运行
Par ()
操作,以便传播
t
,然后我们就可以开始使用它了。所以我们的最后一个案例是

    Fork p (Cons h t) -> fork p >> streamFold fn (fn acc h) t

streamMap
类似。仅在这种情况下,您才可以再次在循环中使用其他参数,如
streamFromList


0
投票

我认为以下是有效的实现。

{-# LANGUAGE BangPatterns #-}

import Control.Monad.Par (IVar, Par, fork, get, new, put, put_, runPar)
import Control.DeepSeq   (NFData, rnf)

data IList a
  = Nil
  | Cons a (IVar (IList a))
  | Fork (Par ()) (IVar (IList a))

instance NFData a => NFData (IList a) where
  rnf Nil = ()
  rnf (Cons a b) = rnf a `seq` rnf b
  rnf (Fork a b) = rnf (runPar a) `seq` rnf b

type Stream a = IVar (IList a)

main :: IO ()
main = print $ sum (pipeline [1 .. 10000])

pipeline :: [Int] -> [Int]
pipeline list = runPar $ do
  strm <- streamFromList list 100 200
  xs   <- streamFold (\x y -> (y : x)) [] strm
  return (reverse xs)

streamFromList :: NFData a => [a] -> Int -> Int -> Par (Stream a)
streamFromList xs k n = do
    var <- new
    fork $ loop xs var k
    return var
  where
    loop [] var _ = put var Nil
    loop xs var 0 = do
      var' <- new
      put_ var (Fork (loop xs var' n) var')
    loop (x:xs) var i = do
      tail <- new
      put var (Cons x tail)
      loop xs tail (i - 1)

streamFold :: (a -> b -> a) -> a -> Stream b -> Par a
streamFold fn !acc strm = do
  ilst <- get strm
  case ilst of
    Nil      -> return acc
    Cons h t -> streamFold fn (fn acc h) t
    Fork p s -> fork p >> streamFold fn acc s

在这里,

streamFromList
(生产者)对流赋值,而
streamFold
并行消耗它们。在第一个
k
值之后,
streamFromList
Fork
放入流中。该
Fork
包含生成下一个
n
值的计算,以及可以使用这些值的流。

此时,如果消费者落后于生产者,消费者就有机会赶上。到达

Fork
后,它
fork
就是包含的生产者。同样,生产者和消费者都可以并行进行,直到生产者在另一个
n
值之后,将另一个
Fork
添加到流中,然后重复循环。


0
投票

在此实现中,分叉被放置在生成列表的中间。

import Control.DeepSeq
import Control.Monad.Par

data IList a
    = Nil -- need to be NFData
    | Cons a (IVar (IList a))
    | Fork (Par ()) (IList a)

instance NFData a => NFData (IList a) where
    rnf Nil = ()
    rnf (Cons x xs) = rnf x `seq` rnf xs
    rnf (Fork c l) = rnf l

type Stream a = IVar (IList a)

-- >>> runPar $ (streamFromList 3 [1 .. 10]) >>= (streamFold (+) 0)
-- 55

streamFromList :: NFData a => Int -> [a] -> Par (Stream a)
streamFromList chunkSize xs = do
    dt <- new
    dl <- new
    put dl xs
    fork $ next chunkSize dt dl
    return dt
  where
    next :: NFData a => Int -> Stream a -> IVar [a] -> Par ()
    next 1 dt dl = do 
        ilist <- get dl 
        case ilist of 
            [] -> put dt Nil 
            (x:xs) -> do 
                delaytail <- new 
                delaylist <- new 
                put delaylist xs
                put dt (Fork (next 1 delaytail delaylist) (Cons x delaytail))
    next chunkSize dt dl = do
        ilist <- get dl
        case ilist of
            [] -> put dt Nil
            (x : xs) -> do
                delaytail <- new
                delaylist <- new
                tail <- new
                put
                    dt
                    ( Fork
                        (next chunkSize delaytail delaylist)
                        (Cons x tail)
                    )
                loop xs tail delaytail delaylist (chunkSize - 2)
    loop :: NFData a => [a] -> Stream a -> Stream a -> IVar [a] -> Int -> Par ()
    loop [] var _ dl _ = do
        put var Nil
        put dl []
    loop (x : xs) var dt dl count =
        if count /= 0
            then do
                tail <- new
                put var (Cons x tail)
                loop xs tail dt dl (count - 1)
            else do
                put var (Cons x dt)
                put dl xs

streamFold :: (a -> b -> a) -> a -> Stream b -> Par a
streamFold fn acc instrm = do
    ilist <- get instrm
    case ilist of
        Nil -> return acc
        Cons h t -> streamFold fn (fn acc h) t
        Fork p Nil -> return acc
        Fork p (Cons h t) -> do
            fork p
            streamFold fn (fn acc h) t

-- >>> runPar $ (streamFromList 3 [1 .. 10]) >>= (streamMap (*2)) >>= (streamFold (+) 0)
-- 110

streamMap :: (NFData a, NFData b) => (a -> b) -> Stream a -> Par (Stream b)
streamMap fn instrm = do
    outstrm <- new
    fork $ init fn instrm outstrm
    return outstrm
  where
    init :: (NFData a, NFData b) => (a -> b) -> Stream a -> Stream b -> Par ()
    init fn instrm outstrm = do
        ilst <- get instrm
        case ilst of
            Nil -> put outstrm Nil
            Cons h t -> do
                newtl <- new
                put outstrm (Cons (fn h) newtl)
                init fn t newtl
            Fork p Nil -> put outstrm Nil
            Fork p (Cons h t) -> do
                fork p
                slist <- get t
                case slist of
                    Nil -> do
                        newtl <- new
                        put newtl Nil
                        put outstrm (Cons (fn h) newtl)
                    Cons h1 t1 -> do
                        newtl <- new
                        delaytail <- new
                        delaystrm <- new
                        put outstrm (Fork (init fn delaystrm delaytail) (Cons (fn h) newtl))
                        loopCons fn h1 t1 newtl delaytail delaystrm
                    Fork p1 Nil -> do
                        delaytail <- new
                        put outstrm (Fork (put delaytail Nil) (Cons (fn h) delaytail))
                    Fork p1 (Cons h1 t1) -> do
                        delaytail <- new
                        delaystrm <- new
                        put outstrm (Fork (init fn delaystrm delaytail) (Cons (fn h) delaytail))
    loopCons :: (NFData a, NFData b) => (a -> b) -> a -> Stream a -> Stream b -> Stream b -> Stream a -> Par ()
    loopCons fn h t var dl ds = do
        tlist <- get t
        case tlist of
            Nil -> do
                newtl <- new
                put newtl Nil
                put var (Cons (fn h) newtl)
                put ds Nil
            Cons h1 t1 -> do
                newtl <- new
                put var (Cons (fn h) newtl)
                loopCons fn h1 t1 newtl dl ds
            Fork p Nil -> do
                newtl <- new
                put newtl Nil
                put var (Cons (fn h) newtl)
            Fork p (Cons h1 t1) -> do
                put ds tlist
                put var (Cons (fn h) dl)
© www.soinside.com 2019 - 2024. All rights reserved.