我正在努力将多层次的逻辑回归模型与群体水平的预测因子进行拟合。我正在通过R使用JAGS。当我将模型与runjags
和R2Jags
软件包拟合时,会出现不同的行为。
我已经尝试编写一个可复制的示例来显示问题。下面,我模拟来自二项式模型的数据,将数据索引到8个图和2个块中,然后拟合多级logistic回归以恢复下面代码中的成功概率(b1
和b2
)。滚动到底部以查看两个拟合的摘要。
我的问题是:
# -------------------------------------------------------------------
# Loading required packages
# -------------------------------------------------------------------
library(rjags)
library(R2jags)
library(MCMCvis)
软件包版本信息:
jags.version()
[1] ‘4.3.0’
R2jags_0.5-7 MCMCvis_0.13.5 rjags_4-10
# -------------------------------------------------------------------
# Simulate data
# -------------------------------------------------------------------
set.seed(10)
N.plots = 8
N.blocks = 2
trials=400
n = rep(100,trials)
N=length(n)
plotReps=N/N.plots
blockReps=N/N.blocks
# Block 1
b1<-rep(c(.25,.75,.9,.1),each=plotReps)-.05
# Block 2
b2<-rep(c(.25,.75,.9,.1),each=plotReps)+.05
y = rbinom(trials, 100, p = c(b1,b2))
# vectors indexing plots and blocks
plot = rep(1:8,each=plotReps)
block = rep(1:2,each=blockReps)
# pass data to list for JAGS
data = list(
y = y,
n = n,
N = length(n),
plot = plot,
block= block,
N.plots = N.plots,
N.blocks = N.blocks
)
# -------------------------------------------------------------------
# Code for JAGS model
# -------------------------------------------------------------------
modelString <- "model {
## Priors
# hyperpriors
mu.alpha ~ dnorm(0, 0.0001)
sigma.plot ~ dunif(0,100)
tau.plot <- 1 / sigma.plot^2
sigma.block ~ dunif(0,100)
tau.block <- 1 / sigma.block^2
# priors
for(i in 1:N.plots){
eps.plot[i]~dnorm(0,tau.plot)
}
for(i in 1:N.blocks){
eps.block[i]~dnorm(0,tau.block)
}
# Likelihood
for(i in 1:N){
logit(p[i]) <- mu.alpha + eps.plot[plot[i]] + eps.block[block[i]]
y[i] ~ dbin(p[i], n[i])
}
}"
# -------------------------------------------------------------------
# Initial values
# -------------------------------------------------------------------
# set inits for rjags
inits = list(list(mu.alpha = 0,sigma.plot=2,sigma.block=2),
list(mu.alpha = 0,sigma.plot=2,sigma.block=2),
list(mu.alpha = 0,sigma.plot=2,sigma.block=2))
# set inits function for R2jags
initsFun<-function(){list(
mu.alpha=0,
sigma.plot=2,
sigma.block=2
)}
# -------------------------------------------------------------------
# Set JAGS parameters and random seed
# -------------------------------------------------------------------
# scalars that specify the
# number of iterations in the chain for adaptation
# number of iterations for burn-in
# number of samples in the final chain
n.adapt = 500
n.update = 5000
n.iterations = 1000
n.thin = 1
parsToMonitor = c("mu.alpha","sigma.plot","sigma.block","eps.plot","eps.block")
# -------------------------------------------------------------------
# Call to JAGS via rjags
# -------------------------------------------------------------------
set.seed(2)
# tuning (n.adapt)
jm = jags.model(textConnection(modelString), data = data, inits = inits,
n.chains = length(inits), n.adapt = n.adapt)
# burn-in (n.update)
update(jm, n.iterations = n.update)
# chain (n.iter)
samples.rjags = coda.samples(jm, variable.names = c(parsToMonitor), n.iter = n.iterations, thin = n.thin)
# -------------------------------------------------------------------
# Call to JAGS via R2jags
# -------------------------------------------------------------------
set.seed(2)
samples.R2jags <-jags(data=data,inits=initsFun,parameters.to.save=parsToMonitor,model.file=textConnection(modelString),
n.thin=n.thin,n.chains=length(inits),n.burnin=n.adapt,n.iter=n.iterations,DIC=T)
# -------------------------------------------------------------------
# Summarize posteriors using MCMCvis
# -------------------------------------------------------------------
sum.rjags <- MCMCvis::MCMCsummary(samples.rjags,params=c("mu.alpha","eps.plot","sigma.plot","sigma.block","eps.block"))
sum.rjags
sum.R2jags2 <- MCMCvis::MCMCsummary(samples.R2jags,params=c("mu.alpha","eps.plot","sigma.plot","sigma.block","eps.block"))
sum.R2jags2
这里是一次rjags fit的输出:
mean sd 2.5% 50% 97.5% Rhat n.eff
mu.alpha 0.07858079 21.2186737 -48.99286669 -0.04046538 45.16440893 1.11 4063
eps.plot[1] -1.77570813 0.8605892 -3.45736942 -1.77762035 -0.02258692 1.00 2857
eps.plot[2] -0.37359614 0.8614370 -2.07913650 -0.37581522 1.36611635 1.00 2846
eps.plot[3] 0.43387001 0.8612820 -1.24273657 0.42332033 2.20253810 1.00 2833
eps.plot[4] 1.31279883 0.8615840 -0.38750596 1.31179143 3.06307745 1.00 2673
eps.plot[5] -1.34317034 0.8749558 -3.06843578 -1.34747145 0.44451006 1.00 2664
eps.plot[6] -0.40064738 0.8749104 -2.13233876 -0.41530587 1.37910977 1.00 2677
eps.plot[7] 0.36515253 0.8738092 -1.35364716 0.35784379 2.15597251 1.00 2692
eps.plot[8] 1.71826293 0.8765952 -0.01057452 1.70627507 3.50314147 1.00 2650
sigma.plot 1.67540914 0.6244529 0.88895789 1.53080631 3.27418094 1.01 741
sigma.block 19.54287007 26.1348353 0.14556791 6.68959552 93.21927035 1.22 94
eps.block[1] -0.55924545 21.2126905 -46.34099332 -0.24261169 48.81435107 1.11 4009
eps.block[2] 0.35658731 21.2177540 -44.65998407 0.25801739 49.31921639 1.11 4457
这是R2jags fit的输出:
mean sd 2.5% 50% 97.5% Rhat n.eff
mu.alpha -0.09358847 19.9972601 -45.81215297 -0.03905447 47.32288503 1.04 1785
eps.plot[1] -1.70448172 0.8954054 -3.41749845 -1.70817566 0.08187877 1.00 1141
eps.plot[2] -0.30070570 0.8940527 -2.01982416 -0.30458798 1.46954632 1.00 1125
eps.plot[3] 0.50295713 0.8932038 -1.20985348 0.50458106 2.29271214 1.01 1156
eps.plot[4] 1.37862742 0.8950657 -0.34965321 1.37627777 3.19545411 1.01 1142
eps.plot[5] -1.40421696 0.8496819 -3.10743244 -1.41880218 0.25843323 1.01 1400
eps.plot[6] -0.45810643 0.8504694 -2.16755579 -0.47087931 1.20827684 1.01 1406
eps.plot[7] 0.30319019 0.8492508 -1.39045509 0.28668886 1.96325582 1.01 1500
eps.plot[8] 1.65474420 0.8500635 -0.03632306 1.63399429 3.29585024 1.01 1395
sigma.plot 1.66375532 0.6681285 0.88231891 1.49564854 3.45544415 1.04 304
sigma.block 20.64694333 23.0418085 0.41071589 11.10308188 85.56459886 1.09 78
eps.block[1] -0.45810120 19.9981027 -46.85060339 -0.33090743 46.27709625 1.04 1795
eps.block[2] 0.58896195 19.9552211 -46.39310677 0.28183123 46.57874408 1.04 1769
这里是来自2个拟合的mu.alpha的迹线图。首先,从rjags适合:
第二,来自R2jags fit:
虽然该问题的一部分与mu.alpha
的缺乏收敛性有关,另一个问题是两个软件包如何确定从后验分布中收集的样本数量。此外,在update
之后的jags.model
调用应为:
update(jm, n.iter = n.update)
而不是
update(jm, n.iterations = n.update)
对于rjags
,您可以轻松指定适配步骤,更新步骤和迭代步骤的数量。观察samples.rjags
,很显然每个链条运行了n.iterations
次。相反,R2jags::jags
将对后验进行多次采样,等于n.iter
自变量减去n.burnin
自变量。因此,如您所指定的,您有1)不将n.update
步骤包括在R2jags::jags
中,以及2)仅对后验采样了1500次,而从rjags
中采样了3000次。]
如果您想进行类似的老化,并进行相同次数的采样,则可以运行:
samples.R2jags <-jags( data=data, inits=inits, parameters.to.save=parsToMonitor, model.file=textConnection(modelString), n.thin=n.thin, n.chains=length(inits), n.burnin=n.adapt + n.update , n.iter=n.iterations +n.update + n.adapt, DIC=T )
最后,
R2jags
默认情况下会加载glm
模块,而rjags
则不会。这可能会导致一些差异,因为使用的采样器可能会有所不同(至少在这种情况下,因为您适合使用glm)。您可以在调用rjags::load.module('glm')
之前使用jags.model
调用加载glm模块。
虽然这本身与问题无关,但我会避免在模型中的每个循环的for循环中使用i
(如果循环之间的迭代次数不同,则使用不同的字母):
modelString <- "model {
## Priors
# hyperpriors
mu.alpha ~ dnorm(0, 0.0001)
sigma.plot ~ dunif(0,100)
tau.plot <- 1 / sigma.plot^2
sigma.block ~ dunif(0,100)
tau.block <- 1 / sigma.block^2
# priors
for(i in 1:N.plots){
eps.plot[i]~dnorm(0,tau.plot)
}
for(j in 1:N.blocks){
eps.block[j]~dnorm(0,tau.block)
}
# Likelihood
for(k in 1:N){
logit(p[k]) <- mu.alpha + eps.plot[plot[k]] + eps.block[block[k]]
y[k] ~ dbin(p[k], n[k])
}
}"