在编写用于训练Keras模型的自定义生成器时,我最初尝试使用generator
语法。所以我从yield
那里得到了qazxswwied。但是,当我尝试用__next__
训练我的模式时,我会得到一个错误,我的生成器不是迭代器。修复是将model.fit_generator
改为yield
,这也需要重新调整return
的逻辑以跟踪状态。与让__next__
为我工作相比,这相当麻烦。
有没有办法让我的yield
工作?如果我必须使用yield
语句,我将需要编写几个迭代器,这些迭代器必须具有非常笨重的逻辑。
我无法调试您的代码,因为您没有发布它,但我缩写了我为语义分段项目编写的自定义数据生成器,供您用作模板:
return
用法:
def generate_data(directory, batch_size):
"""Replaces Keras' native ImageDataGenerator."""
i = 0
file_list = os.listdir(directory)
while True:
image_batch = []
for b in range(batch_size):
if i == len(file_list):
i = 0
random.shuffle(file_list)
sample = file_list[i]
i += 1
image = cv2.resize(cv2.imread(sample[0]), INPUT_SHAPE)
image_batch.append((image.astype(float) - 128) / 128)
yield np.array(image_batch)
我最近玩过Keras的发电机,我终于设法准备了一个例子。它使用随机数据,所以尝试在它上面教NN是没有意义的,但它是一个很好的例子,使用python生成器为Keras。
生成一些数据
model.fit_generator(
generate_data('~/my_data', batch_size),
steps_per_epoch=len(os.listdir('~/my_data')) // batch_size)
发电机
import numpy as np
import pandas as pd
data = np.random.rand(200,2)
expected = np.random.randint(2, size=200).reshape(-1,1)
dataFrame = pd.DataFrame(data, columns = ['a','b'])
expectedFrame = pd.DataFrame(expected, columns = ['expected'])
dataFrameTrain, dataFrameTest = dataFrame[:100],dataFrame[-100:]
expectedFrameTrain, expectedFrameTest = expectedFrame[:100],expectedFrame[-100:]
硬模型
def generator(X_data, y_data, batch_size):
samples_per_epoch = X_data.shape[0]
number_of_batches = samples_per_epoch/batch_size
counter=0
while 1:
X_batch = np.array(X_data[batch_size*counter:batch_size*(counter+1)]).astype('float32')
y_batch = np.array(y_data[batch_size*counter:batch_size*(counter+1)]).astype('float32')
counter += 1
yield X_batch,y_batch
#restart counter to yeild data in the next epoch as well
if counter >= number_of_batches:
counter = 0
产量
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten, Reshape
from keras.layers.convolutional import Convolution1D, Convolution2D, MaxPooling2D
from keras.utils import np_utils
model = Sequential()
model.add(Dense(12, activation='relu', input_dim=dataFrame.shape[1]))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adadelta', metrics=['accuracy'])
#Train the model using generator vs using the full batch
batch_size = 8
model.fit_generator(generator(dataFrameTrain,expectedFrameTrain,batch_size), epochs=3,steps_per_epoch = dataFrame.shape[0]/batch_size, validation_data=generator(dataFrameTest,expectedFrameTest,batch_size*2),validation_steps=dataFrame.shape[0]/batch_size*2)
#without generator
#model.fit(x = np.array(dataFrame), y = np.array(expected), batch_size = batch_size, epochs = 3)
这是我实现它读取任何大小的文件的方式。它就像一个魅力。
Epoch 1/3
25/25 [==============================] - 3s - loss: 0.7297 - acc: 0.4750 -
val_loss: 0.7183 - val_acc: 0.5000
Epoch 2/3
25/25 [==============================] - 0s - loss: 0.7213 - acc: 0.3750 -
val_loss: 0.7117 - val_acc: 0.5000
Epoch 3/3
25/25 [==============================] - 0s - loss: 0.7132 - acc: 0.3750 -
val_loss: 0.7065 - val_acc: 0.5000
主要的背面我有
import pandas as pd
hdr=[]
for i in range(num_labels+num_features):
hdr.append("Col-"+str(i)) # data file do not have header so I need to
# provide one for pd.read_csv by chunks to work
def tgen(filename):
csvfile = open(filename)
reader = pd.read_csv(csvfile, chunksize=batch_size,names=hdr,header=None)
while True:
for chunk in reader:
W=chunk.values # labels and features
Y =W[:,:num_labels] # labels
X =W[:,num_labels:] # features
X= X / 255 # any required transformation
yield X, Y
csvfile = open(filename)
reader = pd.read_csv(csvfile, chunksize=batchz,names=hdr,header=None)