我已经实现了CEK机器。鉴于此算法的闭包结果以及此闭包是Church编码数字的知识,打印数字的最佳方法是什么?
使用以下类型:
data Term = Var String | Abs String Term | App Term Term
data Clos = Clos String Term Env
type Env = [(String, Clos)]
编辑:使这个模糊的问题更清楚:用(\n f x -> f (n f x)) (\f x -> x)
(s z
)启动我的机器我最终得到:
(\f -> (\x -> (f ((n f) x)))) :: Term
[("n", Clos((\f -> (\x -> x)), []))] :: Env
这是一个数据结构,表示代表教堂数字的闭包。如何将此结构更改为数字?我是否必须遍历闭包的环境并替换Term
中的变量(听起来效率低下)?我需要重命名吗?
编辑:实际代码:
data Term = Var String | Abs String Term | App Term Term deriving (Show)
data Clos = Clos String Term Env deriving (Show)
type Env = [(String, Clos)]
data Frame = FArg Term Env | FFun Clos deriving (Show)
data State = State Term Env [Frame] deriving (Show)
step :: State -> Maybe State
step (State (Var x) env k) = fmap (\(Clos y b env') -> State (Abs y b) env' k) $ lookup x env
step (State (App a b) env k) = return $ State a env (FArg b env : k)
step (State (Abs x b) env (FArg t env' : k)) = return $ State t env' (FFun (Clos x b env) : k)
step (State (Abs x b) env (FFun (Clos y b' env') : k)) = return $ State b' ((y, Clos x b env) : env') k
step _ = Nothing
steps :: State -> State
steps st = maybe st steps (step st)
z = Abs "f" $ Abs "x" $ Var "x"
s = Abs "n" $ Abs "f" $ Abs "x" $ App (Var "f") $ App (App (Var "n") (Var "f")) (Var "x")
term = App s z
result = steps $ State term [] []
main = putStrLn $ show result
结果是:
State (Abs "f" (Abs "x" (App (Var "f") (App (App (Var "n") (Var "f")) (Var "x"))))) [("n",Clos "f" (Abs "x" (Var "x")) [])] []
教会数字是两个参数的函数
type Church a = (a -> a) -> a -> a
第二个参数是零的情况,第一个参数是增量情况。所以你只需要将数字应用于一对合适的参数以获得一些(通常是数字的)数据类型:
fromChurch c = c (+ 1) (0 :: Int)