好的,经过一番摆弄,我从第二个注释行中的站点超链接中调整了一个脚本。该脚本的目的是使用具有多个多边形(每个多边形都有一个“名称”记录)的 shapefile 以 GTiff 格式剪辑/遮罩大型栅格(即无法适合 32 位 Python 2.7.5 应用程序)并保存将剪切的栅格放入“clip”子目录中,其中每个蒙版网格均以每个多边形的“名称”命名。 与原始脚本一样,它假设 GTiff 和 shapefile 位于同一投影中并且正确重叠,并且每秒处理约 100 个蒙版。 但是,我已将该脚本修改为 1)使用浮点值高程网格,2)仅将较大网格的窗口加载到当前多边形边界的内存中(即减少内存负载),2)导出GTiff 具有正确的(即未移动的)地理位置和价值。
但是,我遇到了每个蒙版网格都有一个我称之为“右侧阴影”的问题。也就是说,对于多边形中的每一条垂直线,其中该线的右侧位于给定多边形之外,遮罩网格将包括该多边形侧右侧的一个栅格单元。
因此,我的问题是,我做错了什么,导致蒙版网格出现右阴影?
我将尝试弄清楚如何发布示例 shapefile 和 tif 以便其他人可以重现。下面的代码还包含整数值卫星图像的注释行(例如,来自 geospatialpython.com 的原始代码)。
# RasterClipper.py - clip a geospatial image using a shapefile
# http://geospatialpython.com/2011/02/clip-raster-using-shapefile.html
# http://gis.stackexchange.com/questions/57005/python-gdal-write-new-raster-using-projection-from-old
import os, sys, time, Tkinter as Tk, tkFileDialog
import operator
from osgeo import gdal, gdalnumeric, ogr, osr
import Image, ImageDraw
def SelectFile(req = 'Please select a file:', ft='txt'):
""" Customizable file-selection dialogue window, returns list() = [full path, root path, and filename]. """
try: # Try to select a csv dataset
foptions = dict(filetypes=[(ft+' file','*.'+ft)], defaultextension='.'+ft)
root = Tk.Tk(); root.withdraw(); fname = tkFileDialog.askopenfilename(title=req, **foptions); root.destroy()
return [fname]+list(os.path.split(fname))
except: print "Error: {0}".format(sys.exc_info()[1]); time.sleep(5); sys.exit()
def rnd(v, N): return int(round(v/float(N))*N)
def rnd2(v): return int(round(v))
# Raster image to clip
rname = SelectFile('Please select your TIF DEM:',ft='tif')
raster = rname[2]
print 'DEM:', raster
os.chdir(rname[1])
# Polygon shapefile used to clip
shp = SelectFile('Please select your shapefile of catchments (requires Name field):',ft='shp')[2]
print 'shp:', shp
qs = raw_input('Do you want to stretch the image? (y/n)')
qs = True if qs == 'y' else False
# Name of base clip raster file(s)
if not os.path.exists('./clip/'): os.mkdir('./clip/')
output = "/clip/clip"
# This function will convert the rasterized clipper shapefile
# to a mask for use within GDAL.
def imageToArray(i):
"""
Converts a Python Imaging Library array to a
gdalnumeric image.
"""
a=gdalnumeric.fromstring(i.tostring(),'b')
a.shape=i.im.size[1], i.im.size[0]
return a
def arrayToImage(a):
"""
Converts a gdalnumeric array to a
Python Imaging Library Image.
"""
i=Image.fromstring('L',(a.shape[1],a.shape[0]), (a.astype('b')).tostring())
return i
def world2Pixel(geoMatrix, x, y, N= 5, r=True):
"""
Uses a gdal geomatrix (gdal.GetGeoTransform()) to calculate
the pixel location of a geospatial coordinate
"""
ulX = geoMatrix[0]
ulY = geoMatrix[3]
xDist = geoMatrix[1]
yDist = geoMatrix[5]
rtnX = geoMatrix[2]
rtnY = geoMatrix[4]
if r:
pixel = int(round(x - ulX) / xDist)
line = int(round(ulY - y) / xDist)
else:
pixel = int(rnd(x - ulX, N) / xDist)
line = int(rnd(ulY - y, N) / xDist)
return (pixel, line)
def histogram(a, bins=range(0,256)):
"""
Histogram function for multi-dimensional array.
a = array
bins = range of numbers to match
"""
fa = a.flat
n = gdalnumeric.searchsorted(gdalnumeric.sort(fa), bins)
n = gdalnumeric.concatenate([n, [len(fa)]])
hist = n[1:]-n[:-1]
return hist
def stretch(a):
"""
Performs a histogram stretch on a gdalnumeric array image.
"""
hist = histogram(a)
im = arrayToImage(a)
lut = []
for b in range(0, len(hist), 256):
# step size
step = reduce(operator.add, hist[b:b+256]) / 255
# create equalization lookup table
n = 0
for i in range(256):
lut.append(n / step)
n = n + hist[i+b]
im = im.point(lut)
return imageToArray(im)
# Also load as a gdal image to get geotransform
# (world file) info
srcImage = gdal.Open(raster)
geoTrans_src = srcImage.GetGeoTransform()
#print geoTrans_src
pxs = int(geoTrans_src[1])
srcband = srcImage.GetRasterBand(1)
ndv = -9999.0
#ndv = 0
# Create an OGR layer from a boundary shapefile
shapef = ogr.Open(shp)
lyr = shapef.GetLayer()
minXl, maxXl, minYl, maxYl = lyr.GetExtent()
ulXl, ulYl = world2Pixel(geoTrans_src, minXl, maxYl)
lrXl, lrYl = world2Pixel(geoTrans_src, maxXl, minYl)
#poly = lyr.GetNextFeature()
for poly in lyr:
pnm = poly.GetField("Name")
# Convert the layer extent to image pixel coordinates
geom = poly.GetGeometryRef()
#print geom.GetEnvelope()
minX, maxX, minY, maxY = geom.GetEnvelope()
geoTrans = geoTrans_src
ulX, ulY = world2Pixel(geoTrans, minX, maxY)
lrX, lrY = world2Pixel(geoTrans, maxX, minY)
# Calculate the pixel size of the new image
pxWidth = int(lrX - ulX)
pxHeight = int(lrY - ulY)
# Load the source data as a gdalnumeric array
#srcArray = gdalnumeric.LoadFile(raster)
clip = gdalnumeric.BandReadAsArray(srcband, xoff=ulX, yoff=ulY, win_xsize=pxWidth, win_ysize=pxHeight)
#clip = srcArray[:, ulY:lrY, ulX:lrX]
# Create a new geomatrix for the image
geoTrans = list(geoTrans)
geoTrans[0] = minX
geoTrans[3] = maxY
# Map points to pixels for drawing the
# boundary on a blank 8-bit,
# black and white, mask image.
points = []
pixels = []
#geom = poly.GetGeometryRef()
pts = geom.GetGeometryRef(0)
for p in range(pts.GetPointCount()):
points.append((pts.GetX(p), pts.GetY(p)))
for p in points:
pixels.append(world2Pixel(geoTrans, p[0], p[1]))
rasterPoly = Image.new("L", (pxWidth, pxHeight), 1)
rasterize = ImageDraw.Draw(rasterPoly)
rasterize.polygon(pixels, 0)
mask = imageToArray(rasterPoly)
# Clip the image using the mask
#clip = gdalnumeric.choose(mask, (clip, 0)).astype(gdalnumeric.uint8)
clip = gdalnumeric.choose(mask, (clip, ndv)).astype(gdalnumeric.numpy.float)
# This image has 3 bands so we stretch each one to make them
# visually brighter
#for i in range(3):
# clip[i,:,:] = stretch(clip[i,:,:])
if qs: clip[:,:] = stretch(clip[:,:])
# Save ndvi as tiff
outputi = rname[1]+output+'_'+pnm+'.tif'
#gdalnumeric.SaveArray(clip, outputi, format="GTiff", prototype=srcImage)
driver = gdal.GetDriverByName('GTiff')
DataSet = driver.Create(outputi, pxWidth, pxHeight, 1, gdal.GDT_Float64)
#DataSet = driver.Create(outputi, pxWidth, pxHeight, 1, gdal.GDT_Int32)
DataSet.SetGeoTransform(geoTrans)
Projection = osr.SpatialReference()
Projection.ImportFromWkt(srcImage.GetProjectionRef())
DataSet.SetProjection(Projection.ExportToWkt())
# Write the array
DataSet.GetRasterBand(1).WriteArray(clip)
DataSet.GetRasterBand(1).SetNoDataValue(ndv)
# Save ndvi as an 8-bit jpeg for an easy, quick preview
#clip = clip.astype(gdalnumeric.uint8)
#gdalnumeric.SaveArray(clip, rname[1]+outputi+'.jpg', format="JPEG")
#print '\t\tSaved:', outputi, '-.tif, -.jpg'
print 'Saved:', outputi
del mask, clip, geom
del driver, DataSet
del shapef, srcImage, srcband
此功能已合并到 gdal 命令行实用程序中。鉴于您的情况,我看不出您有任何理由想在 Python 中自己执行此操作。
您可以使用 OGR 循环遍历几何图形,并为每个几何图形调用
gdalwarp
并使用适当的参数。
import ogr
import subprocess
inraster = 'NE1_HR_LC_SR_W_DR\NE1_HR_LC_SR_W_DR.tif'
inshape = '110m_cultural\ne_110m_admin_0_countries_lakes.shp'
ds = ogr.Open(inshape)
lyr = ds.GetLayer(0)
lyr.ResetReading()
ft = lyr.GetNextFeature()
while ft:
country_name = ft.GetFieldAsString('admin')
outraster = inraster.replace('.tif', '_%s.tif' % country_name.replace(' ', '_'))
subprocess.call(['gdalwarp', inraster, outraster, '-cutline', inshape,
'-crop_to_cutline', '-cwhere', "'admin'='%s'" % country_name])
ft = lyr.GetNextFeature()
ds = None
我在上面的示例中使用了来自 Natural Earth 的一些示例数据,对于巴西,剪裁如下:
如果您只想将图像裁剪到多边形区域并且不遮盖外部的任何内容,您可以转换形状文件,使其包含多边形的包络线。或者简单地松开形状文件并使用
gdal_translate
调用 -projwin
来指定感兴趣的区域。