我今天正在对一些缓慢的 SQL 查询进行故障排除,但不太了解下面的性能差异:
当尝试根据某些条件从数据表中提取
max(timestamp)
时,如果存在匹配行,则使用 MAX()
比 ORDER BY timestamp LIMIT 1
慢,但如果未找到匹配行,则速度要快得多。
SELECT timestamp
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 4
ORDER BY timestamp DESC
LIMIT 1;
(0 rows)
Time: 1314.544 ms
SELECT timestamp
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 5
ORDER BY timestamp DESC
LIMIT 1;
(1 row)
Time: 10.890 ms
SELECT MAX(timestamp)
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 4;
(0 rows)
Time: 0.869 ms
SELECT MAX(timestamp)
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 5;
(1 row)
Time: 84.087 ms
(timestamp)
和(sensor_id, timestamp)
上有索引,我注意到Postgres对这两种情况使用非常不同的查询计划和索引:
QUERY PLAN (ORDER BY)
--------------------------------------------------------------------------------------------------------
Limit (cost=0.43..9.47 rows=1 width=8)
-> Nested Loop (cost=0.43..396254.63 rows=43823 width=8)
Join Filter: (data.sensor_id = sensors.id)
-> Index Scan using timestamp_ind on data (cost=0.43..254918.66 rows=4710976 width=12)
-> Materialize (cost=0.00..6.70 rows=2 width=4)
-> Seq Scan on sensors (cost=0.00..6.69 rows=2 width=4)
Filter: (station_id = 4)
(7 rows)
QUERY PLAN (MAX)
----------------------------------------------------------------------------------------------------------
Aggregate (cost=3680.59..3680.60 rows=1 width=8)
-> Nested Loop (cost=0.43..3571.03 rows=43823 width=8)
-> Seq Scan on sensors (cost=0.00..6.69 rows=2 width=4)
Filter: (station_id = 4)
-> Index Only Scan using sensor_ind_timestamp on data (cost=0.43..1389.59 rows=39258 width=12)
Index Cond: (sensor_id = sensors.id)
(6 rows)
所以我的两个问题是:
EXISTS
检查更好的方法来提高所有情况下的性能(匹配行与不匹配行)?编辑解决下面评论中的问题。我保留了上面的初始查询计划以供将来参考:
表格定义:
Table "public.sensors"
Column | Type | Modifiers
----------------------+------------------------+-----------------------------------------------------------------
id | integer | not null default nextval('sensors_id_seq'::regclass)
station_id | integer | not null
....
Indexes:
"sensor_primary" PRIMARY KEY, btree (id)
"ind_station_id" btree (station_id, id)
"ind_station" btree (station_id)
Table "public.data"
Column | Type | Modifiers
-----------+--------------------------+------------------------------------------------------------------
id | integer | not null default nextval('data_id_seq'::regclass)
timestamp | timestamp with time zone | not null
sensor_id | integer | not null
avg | integer |
Indexes:
"timestamp_ind" btree ("timestamp" DESC)
"sensor_ind" btree (sensor_id)
"sensor_ind_timestamp" btree (sensor_id, "timestamp")
"sensor_ind_timestamp_desc" btree (sensor_id, "timestamp" DESC)
请注意,在@Erwin 下面的建议之后,我刚刚在
ind_station_id
上添加了 sensors
。时间并没有真正发生巨大变化,仍然是 >1200ms
情况下的 ORDER BY DESC + LIMIT 1
和 ~0.9ms
情况下的 MAX
。
查询计划:
QUERY PLAN (ORDER BY)
----------------------------------------------------------------------------------------------------------
Limit (cost=0.58..9.62 rows=1 width=8) (actual time=2161.054..2161.054 rows=0 loops=1)
Buffers: shared hit=3418066 read=47326
-> Nested Loop (cost=0.58..396382.45 rows=43823 width=8) (actual time=2161.053..2161.053 rows=0 loops=1)
Join Filter: (data.sensor_id = sensors.id)
Buffers: shared hit=3418066 read=47326
-> Index Scan using timestamp_ind on data (cost=0.43..255048.99 rows=4710976 width=12) (actual time=0.047..1410.715 rows=4710976 loops=1)
Buffers: shared hit=3418065 read=47326
-> Materialize (cost=0.14..4.19 rows=2 width=4) (actual time=0.000..0.000 rows=0 loops=4710976)
Buffers: shared hit=1
-> Index Only Scan using ind_station_id on sensors (cost=0.14..4.18 rows=2 width=4) (actual time=0.004..0.004 rows=0 loops=1)
Index Cond: (station_id = 4)
Heap Fetches: 0
Buffers: shared hit=1
Planning time: 0.478 ms
Execution time: 2161.090 ms
(15 rows)
QUERY (MAX)
----------------------------------------------------------------------------------------------------------
Aggregate (cost=3678.08..3678.09 rows=1 width=8) (actual time=0.009..0.009 rows=1 loops=1)
Buffers: shared hit=1
-> Nested Loop (cost=0.58..3568.52 rows=43823 width=8) (actual time=0.006..0.006 rows=0 loops=1)
Buffers: shared hit=1
-> Index Only Scan using ind_station_id on sensors (cost=0.14..4.18 rows=2 width=4) (actual time=0.005..0.005 rows=0 loops=1)
Index Cond: (station_id = 4)
Heap Fetches: 0
Buffers: shared hit=1
-> Index Only Scan using sensor_ind_timestamp on data (cost=0.43..1389.59 rows=39258 width=12) (never executed)
Index Cond: (sensor_id = sensors.id)
Heap Fetches: 0
Planning time: 0.435 ms
Execution time: 0.048 ms
(13 rows)
所以就像前面解释的那样,
ORDER BY
执行了 Scan using timestamp_in on data
,而在 MAX
情况下则没有执行此操作。
Postgres 版本: 来自 Ubuntu 存储库的 Postgres:
PostgreSQL 9.4.5 on x86_64-unknown-linux-gnu, compiled by gcc (Ubuntu 5.2.1-21ubuntu2) 5.2.1 20151003, 64-bit
请注意,存在
NOT NULL
约束,因此 ORDER BY
不必对空行进行排序。
还要注意,我对差异从何而来非常感兴趣。虽然不理想,但我可以使用
EXISTS (<1ms)
然后使用 SELECT (~11ms)
相对快速地检索数据。
对于性能而言,sensor.station_id
上的 匹配索引
max()
和
ORDER BY DESC
+ LIMIT 1
之间存在实际的差异。在默认的升序排序中,空值排序在最后。因此,它首先按降序排序。如果存在则
ORDER BY timestamp DESC LIMIT 1
返回null,而聚合函数max()
忽略null并返回最新的非空时间戳。 ORDER BY timestamp DESC NULLS LAST LIMIT 1
是等价的。
由于您的专栏
d.timestamp
已定义为NOT NULL
(如您的更新所示),因此没有有效的区别。具有 DESC NULLS LAST
的索引以及 ORDER BY
中针对 LIMIT
查询的相同子句应该仍然效果最佳。我建议索引...
传感器(station_id,id) 数据(传感器 ID、时间戳 DESC NULLS LAST)
我的下面的查询建立在第二个查询的基础上。删除索引
和sensor_ind_timestamp
sensor_ind_timestamp_desc
更重要的是,第一个表
sensors
上的过滤器返回很少,但仍然(可能)多行。 Postgres 预计根据您添加的查询计划找到 2 行 (rows=2
)。data
进行 索引跳过扫描(又名松散索引扫描)。但目前尚未实现(从 Postgres 16 开始)。有解决方法。参见:
最好的应该是:
SELECT d.timestamp
FROM sensors s
CROSS JOIN LATERAL (
SELECT timestamp
FROM data
WHERE sensor_id = s.id
ORDER BY timestamp DESC NULLS LAST
LIMIT 1
) d
WHERE s.station_id = 4
ORDER BY d.timestamp DESC NULLS LAST
LIMIT 1;
max()
和 ORDER BY
/ LIMIT
之间的选择几乎不重要。你也可以:
SELECT max(d.timestamp) AS timestamp
FROM sensors s
CROSS JOIN LATERAL (
SELECT timestamp
FROM data
WHERE sensor_id = s.id
ORDER BY timestamp DESC NULLS LAST
LIMIT 1
) d
WHERE s.station_id = 4;
或者:
SELECT max(d.timestamp) AS timestamp
FROM sensors s
CROSS JOIN LATERAL (
SELECT max(timestamp) AS timestamp
FROM data
WHERE sensor_id = s.id
) d
WHERE s.station_id = 4;
或者甚至使用相关子查询,最短:
SELECT max((SELECT max(timestamp) FROM data WHERE sensor_id = s.id)) AS timestamp
FROM sensors s
WHERE station_id = 4;
注意双括号!
LATERAL
子查询的优点是您可以检索所选行的任意列,而不仅仅是最新时间戳(一个值)。
相关:
查询计划显示索引名称
timestamp_ind
和 timestamp_sensor_ind
。但这样的索引无助于搜索特定传感器。
要解析等于查询(如
sensor.id = data.sensor_id
),该列必须是索引中的第一列。尝试添加一个允许在 sensor_id
上搜索的索引,并且在传感器内按时间戳排序:
create index sensor_timestamp_ind on data(sensor_id, timestamp);
添加该索引是否可以加快查询速度?