我想自定义标记颜色,出于这个原因,我进行了SetColor功能。但是它仅更改图例中的名称,而不更改可视化中的颜色。如何解决?
import plotly.express as px
import pandas as pd
rows=[['501-600','15','122.58333','45.36667'],
['till 500','4','12.5','27.5'],
['more 1001','41','-115.53333','38.08'],
]
colmns=['bins','data','longitude','latitude']
df=pd.DataFrame(data=rows, columns=colmns)
df = df.astype({"data": int})
def SetColor(x):
if(x == '501-600'):
return "steelblue"
elif(x == 'till 500'):
return "mintcream"
elif(x == 'more 1001'):
return "palegoldenrod"
fig=px.scatter_geo(df,lon='longitude', lat='latitude',color=list(map(SetColor, df['bins'])),
opacity=0.5,size='data',
projection="natural earth")
fig.update_traces(marker=dict(symbol='octagon',
line=dict(width=0)))
fig.show()
scatter_geo中的color参数是指类别的列,而不是您要选择的颜色。因此,您应该设置color ='bins'并添加一个新参数'color_discrete_sequence'和所需的特定颜色。参见下面的代码和结果:
import plotly.express as px
import pandas as pd
rows=[['501-600','15','122.58333','45.36667'],
['till 500','4','12.5','27.5'],
['more 1001','41','-115.53333','38.08'],
]
colmns=['bins','data','longitude','latitude']
df=pd.DataFrame(data=rows, columns=colmns)
df = df.astype({"data": int})
# def SetColor(x):
# if(x == '501-600'):
# return "steelblue"
# elif(x == 'till 500'):
# return "mintcream"
# elif(x == 'more 1001'):
# return "palegoldenrod"
fig=px.scatter_geo(df,lon='longitude', lat='latitude',color='bins',
opacity=0.5,size='data',
projection="natural earth", color_discrete_sequence=['steelblue', 'mintcream', 'palegoldenrod'])
fig.update_traces(marker=dict(symbol='octagon',
line=dict(width=0)))
fig.show()