我有一个使用以下架构的数据库:
CREATE TABLE IF NOT EXISTS `sessions` (
`starttime` datetime NOT NULL,
`ip` varchar(15) NOT NULL default '',
`country_name` varchar(45) default '',
`country_iso_code` varchar(2) default '',
`org` varchar(128) default '',
KEY (`ip`),
KEY (`starttime`),
KEY (`country_name`)
);
(实际的表包含更多列;我只包含了我查询的列。)引擎是InnoDB。
如你所见,有3个指数 - 关于ip
,starttime
和country_name
。
该表非常大 - 它包含150万行。我正在运行各种查询,试图提取一个月的信息(对于2018年8月,在下面的示例中)。
像这样的查询
SELECT
UNIX_TIMESTAMP(starttime) as time_sec,
country_iso_code AS metric,
COUNT(country_iso_code) AS value
FROM
sessions
WHERE
starttime >= FROM_UNIXTIME(1533070800) AND
starttime <= FROM_UNIXTIME(1535749199)
GROUP BY metric;
虽然在country_iso_code
上没有索引,但是相当缓慢但可忍受(几十秒)。
(忽略SELECT
中的第一件事;我知道它似乎没有意义,但是在使用查询结果的工具中需要它。同样,忽略使用FROM_UNIXTIME()
而不是日期字符串;这查询的一部分是自动生成的,我无法控制它。)
但是,像这样的查询
SELECT
country_name AS Country,
COUNT(country_name) AS Attacks
FROM
sessions
WHERE
starttime >= FROM_UNIXTIME(1533070800) AND
starttime <= FROM_UNIXTIME(1535749199)
GROUP BY Country;
是无法忍受的缓慢 - 我让它运行了大约半个小时然后放弃了而没有得到任何结果。
EXPLAIN
的结果:
+----+-------------+----------+------------+-------+------------------------------------+--------------+---------+------+----------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+------------------------------------+--------------+---------+------+----------+----------+-------------+
| 1 | SIMPLE | sessions | NULL | index | starttime,starttime_2,country_name | country_name | 138 | NULL | 14771687 | 35.81 | Using where |
+----+-------------+----------+------------+-------+------------------------------------+--------------+---------+------+----------+----------+-------------+
究竟是什么问题?我应该为其他东西编制索引吗?也许是(starttime
,country_name
)的综合指数?我读过this guide,但也许我误解了它?
以下是一些同样缓慢且可能遇到同样问题的其他查询:
查询#2:
SELECT
ip AS IP,
COUNT(ip) AS Attacks
FROM
sessions
WHERE
starttime >= FROM_UNIXTIME(1533070800) AND
starttime <= FROM_UNIXTIME(1535749199)
GROUP BY ip;
EXPLAIN
的结果:
+----+-------------+----------+------------+-------+--------------------------+------+---------+------+----------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+--------------------------+------+---------+------+----------+----------+-------------+
| 1 | SIMPLE | sessions | NULL | index | starttime,ip,starttime_2 | ip | 47 | NULL | 14771780 | 35.81 | Using where |
+----+-------------+----------+------------+-------+--------------------------+------+---------+------+----------+----------+-------------+
查询#3:
SELECT
org AS Organization,
COUNT(org) AS Attacks
FROM
sessions
WHERE
starttime >= FROM_UNIXTIME(1533070800) AND
starttime <= FROM_UNIXTIME(1535749199)
GROUP BY Organization;
EXPLAIN
的结果:
+----+-------------+----------+------------+-------+---------------------------+------+---------+------+----------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------------------+------+---------+------+----------+----------+-------------+
| 1 | SIMPLE | sessions | NULL | index | starttime,starttime_2,org | org | 387 | NULL | 14771800 | 35.81 | Using where |
+----+-------------+----------+------------+-------+---------------------------+------+---------+------+----------+----------+-------------+
查询#4:
SELECT
ip AS IP,
country_name AS Country,
city_name AS City,
org AS Organization,
COUNT(ip) AS Attacks
FROM
sessions
WHERE
starttime >= FROM_UNIXTIME(1533070800) AND
starttime <= FROM_UNIXTIME(1535749199)
GROUP BY ip;
EXPLAIN
的结果:
+----+-------------+----------+------------+-------+--------------------------+------+---------+------+----------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+--------------------------+------+---------+------+----------+----------+-------------+
| 1 | SIMPLE | sessions | NULL | index | starttime,ip,starttime_2 | ip | 47 | NULL | 14771914 | 35.81 | Using where |
+----+-------------+----------+------------+-------+--------------------------+------+---------+------+----------+----------+-------------+
一般来说,表单的查询
SELECT column, COUNT(column)
FROM tbl
WHERE datestamp >= a AND datestamp <= b
GROUP BY column
当表格在(datestamp, column)
上有复合索引时表现最佳。为什么?它们可以通过索引扫描来满足,而不是需要读取表的所有行。
换句话说,可以通过随机访问索引(到日期戳的第一个值)来定位查询的第一个相关行。然后,MySQL可以按顺序读取索引并计算column
中的各种值,直到它到达最后一个相关行。没有必要阅读实际的表格;仅从索引中满足查询。这使它更快。
UPDATE TABLE tbl ADD INDEX date_col (datestamp, column);
为您创建索引。
当心两件事。一:单列索引不一定有助于聚合查询性能。
二:很难猜测用于获取索引扫描的正确索引而不会看到整个查询。简化的查询通常会导致索引过于简单。
更好......
请注意,您没有PRIMARY KEY
;那很顽皮。拥有PK本身并不能提高性能,但PK开始使用starttime
会。我们开工吧:
CREATE TABLE IF NOT EXISTS `sessions` (
id INT UNSIGNED NOT NULL AUTO_INCREMENT, -- note
`starttime` datetime NOT NULL,
`ip` varchar(39) NOT NULL CHARACTER SET ascii default '', -- note
`country_name` varchar(45) default '',
`country_iso_code` char(2) CHARACTER SET ascii default '', -- note
`org` varchar(128) default '',
PRIMARY KEY(starttime, id) -- in this order
INDEX(id) -- to keep AUTO_INCREMENT happy
-- The rest are unnecessary for the queries in question:
KEY (`ip`),
KEY (`starttime`),
KEY (`country_name`)
) ENGINE=InnoDB; -- just in case you are accidentally getting MyISAM
为什么?这将利用PK与数据的“聚类”。这样,只扫描时间范围内的表格的一部分。并且索引和数据之间不会反弹。并且您不需要很多索引来有效地完成所有情况。
IPv6最多需要39个字节。请注意,VARCHAR
不允许您进行任何范围(CDR)测试。我可以进一步讨论你喜欢的问题。