是否可以将元数据添加到服务于servable
的张量流中,以便此元数据也填充在来自servable的响应中?
如果我有一个文件结构的servable:
my_servable/
1541778457/
variables/
saved_model.pb
例如:
```
outputs {
key: "classes"
value {
dtype: DT_STRING
tensor_shape {
dim {
size: 8
}
}
string_val: "a"
string_val: "b"
string_val: "c"
string_val: "d"
string_val: "e"
string_val: "f"
string_val: "g"
string_val: "h"
}
}
outputs {
key: "scores"
value {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 1
}
dim {
size: 8
}
}
float_val: 1.212528104588273e-06
float_val: 5.094948463124638e-08
float_val: 0.0009737954242154956
float_val: 0.9988483190536499
float_val: 3.245145592245535e-07
float_val: 0.00010837535955943167
float_val: 4.101086960872635e-05
float_val: 2.676981057447847e-05
}
}
model_spec {
name: "my_model"
version {
value: 1541778457
}
signature_name: "prediction"
}
如果我有类似git哈希或生成此可服务的代码的唯一标识符(如f6ca434910504532a0d50dfd12f22d4c
),是否可以在客户端请求中获取此数据?
理想情况如下:
```
outputs {
key: "classes"
value {
dtype: DT_STRING
tensor_shape {
dim {
size: 8
}
}
string_val: "a"
string_val: "b"
string_val: "c"
string_val: "d"
string_val: "e"
string_val: "f"
string_val: "g"
string_val: "h"
}
}
outputs {
key: "scores"
value {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 1
}
dim {
size: 8
}
}
float_val: 1.212528104588273e-06
float_val: 5.094948463124638e-08
float_val: 0.0009737954242154956
float_val: 0.9988483190536499
float_val: 3.245145592245535e-07
float_val: 0.00010837535955943167
float_val: 4.101086960872635e-05
float_val: 2.676981057447847e-05
}
}
model_spec {
name: "my_model"
version {
value: 1541778457
}
hash {
value: f6ca434910504532a0d50dfd12f22d4c
}
signature_name: "prediction"
}
我尝试将目录从1541778457
更改为哈希,但这给了:
W tensorflow_serving/sources/storage_path/file_system_storage_path_source.cc:268] No versions of servable default found under base path
我想你可以通过几种方式解决这个问题。如果您希望更改文件夹名称的想法,请记住在这种情况下文件夹名称描述您的模型版本,我认为必须是整数。因此,我假设您需要将哈希值转换为二进制或十进制,然后在收到它时将其转换回来。
我认为更好的解决方案是,如果您能够更改模型并添加包含哈希值的变量。并将其添加到模型signature_def中。在python中看起来像:
// create your field
hash = tf.placeholder("f6ca434910504532a0d50dfd12f22d4c",tf.string, name="HASH")
// build tensor
hash_info = tf.saved_model.utils.build_tensor_info(hash)
// add hash_info in your output in signature_def
// then you should be able to receive that data in your request