我有点(例如,电池塔位置的纬度,经度对),我需要获取它们形成的Voronoi细胞的多边形。
from scipy.spatial import Voronoi
tower = [[ 24.686 , 46.7081],
[ 24.686 , 46.7081],
[ 24.686 , 46.7081]]
c = Voronoi(towers)
现在,我需要获取每个单元格的经度,经度坐标的多边形边界(以及该多边形所包围的质心是什么)。我也需要这个Voronoi。这意味着边界不会达到无穷大,而是在边界框内。
考虑到矩形边界框,我的第一个想法是定义此边界框与scipy.spatial.Voronoi
生成的Voronoï图之间的相交运算。一个想法不一定很棒,因为这需要编写大量计算几何的基本函数。
但是,这是我想到的第二个主意(技巧?):用于计算平面中一组scipy.spatial.Voronoi
点的Voronoï图的算法的时间复杂度为n
。如何添加点以约束初始点位于边界框中的Voronoï单元呢?
一张图片值得发表精彩演讲:
O(n ln(n))
我在这里做什么?那很简单!初始点(蓝色)位于中。然后,根据[0.0, 1.0] x [0.0, 1.0]
(边界框的左边缘),通过反射对称性获得左侧(即[-1.0, 0.0] x [0.0, 1.0]
)上的点(蓝色)。利用根据x = 0.0
,x = 1.0
和y = 0.0
(边界框的其他边缘)的反射对称性,我得到了需要做的所有点(蓝色)。
然后我运行y = 1.0
。上一张图片描绘了生成的Voronoï图(我使用scipy.spatial.Voronoi
)。
下一步该怎么办?只需根据边界框过滤点,边或面。并根据众所周知的公式求出每张脸的质心,以计算出scipy.spatial.voronoi_plot_2d
。这是结果的图像(质心为红色):
scipy.spatial.voronoi_plot_2d
太好了!它似乎有效。如果经过一次迭代后,我尝试对质心(红色)而不是初始点(蓝色)重新运行算法,该怎么办?如果我一次又一次尝试怎么办?
步骤2
步骤10
步骤25
很酷! Voronoï细胞倾向于使其energy ...
最小化我在使用scipy的voronoi函数和创建CVD时遇到了很多麻烦,因此这些精彩的帖子和评论对我们很有帮助。作为一名编程新手,我试图从Flabetvvibes的答案中理解代码,我将分享我对它如何与Energya以及我自己的修改一起工作的解释。我还在此答案的底部完整地发布了我的代码版本]
in_box函数使用numpy的logical_and方法返回一个布尔数组,该布尔数组表示塔中哪些坐标位于边界框中。
import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys
eps = sys.float_info.epsilon
n_towers = 100
towers = np.random.rand(n_towers, 2)
bounding_box = np.array([0., 1., 0., 1.]) # [x_min, x_max, y_min, y_max]
def in_box(towers, bounding_box):
return np.logical_and(np.logical_and(bounding_box[0] <= towers[:, 0],
towers[:, 0] <= bounding_box[1]),
np.logical_and(bounding_box[2] <= towers[:, 1],
towers[:, 1] <= bounding_box[3]))
def voronoi(towers, bounding_box):
# Select towers inside the bounding box
i = in_box(towers, bounding_box)
# Mirror points
points_center = towers[i, :]
points_left = np.copy(points_center)
points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])
points_right = np.copy(points_center)
points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])
points_down = np.copy(points_center)
points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])
points_up = np.copy(points_center)
points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])
points = np.append(points_center,
np.append(np.append(points_left,
points_right,
axis=0),
np.append(points_down,
points_up,
axis=0),
axis=0),
axis=0)
# Compute Voronoi
vor = sp.spatial.Voronoi(points)
# Filter regions
regions = []
for region in vor.regions:
flag = True
for index in region:
if index == -1:
flag = False
break
else:
x = vor.vertices[index, 0]
y = vor.vertices[index, 1]
if not(bounding_box[0] - eps <= x and x <= bounding_box[1] + eps and
bounding_box[2] - eps <= y and y <= bounding_box[3] + eps):
flag = False
break
if region != [] and flag:
regions.append(region)
vor.filtered_points = points_center
vor.filtered_regions = regions
return vor
def centroid_region(vertices):
# Polygon's signed area
A = 0
# Centroid's x
C_x = 0
# Centroid's y
C_y = 0
for i in range(0, len(vertices) - 1):
s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
A = A + s
C_x = C_x + (vertices[i, 0] + vertices[i + 1, 0]) * s
C_y = C_y + (vertices[i, 1] + vertices[i + 1, 1]) * s
A = 0.5 * A
C_x = (1.0 / (6.0 * A)) * C_x
C_y = (1.0 / (6.0 * A)) * C_y
return np.array([[C_x, C_y]])
vor = voronoi(towers, bounding_box)
fig = pl.figure()
ax = fig.gca()
# Plot initial points
ax.plot(vor.filtered_points[:, 0], vor.filtered_points[:, 1], 'b.')
# Plot ridges points
for region in vor.filtered_regions:
vertices = vor.vertices[region, :]
ax.plot(vertices[:, 0], vertices[:, 1], 'go')
# Plot ridges
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :]
ax.plot(vertices[:, 0], vertices[:, 1], 'k-')
# Compute and plot centroids
centroids = []
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :]
centroid = centroid_region(vertices)
centroids.append(list(centroid[0, :]))
ax.plot(centroid[:, 0], centroid[:, 1], 'r.')
ax.set_xlim([-0.1, 1.1])
ax.set_ylim([-0.1, 1.1])
pl.savefig("bounded_voronoi.png")
sp.spatial.voronoi_plot_2d(vor)
pl.savefig("voronoi.png")
Flabetvvibes镜像这些点,以使边界框内边缘的区域有限。 Scipy的voronoi方法针对未定义的顶点返回-1,因此对这些点进行镜像可以使边界框内的所有区域都是有限的,并且所有无限区域都位于边界框外的镜像区域中,稍后将丢弃。
import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys
import copy
eps = sys.float_info.epsilon
# Returns a new np.array of towers that within the bounding_box
def in_box(towers, bounding_box):
return np.logical_and(np.logical_and(bounding_box[0] <= towers[:, 0],
towers[:, 0] <= bounding_box[1]),
np.logical_and(bounding_box[2] <= towers[:, 1],
towers[:, 1] <= bounding_box[3]))
bounded_voronoi方法的最后这一点调用scipy的voronoi函数,并为边界框中的已过滤点和区域添加新属性。 Energya建议删除Flabetvvibe的代码,该代码使用一个衬板手动找到边界框内的所有有限区域,该衬板获得区域的前五分之一,这是原始输入以及组成边界框的点。
# Generates a bounded vornoi diagram with finite regions in the bounding box
def bounded_voronoi(towers, bounding_box):
# Select towers inside the bounding box
i = in_box(towers, bounding_box)
# Mirror points left, right, above, and under to provide finite regions for the
# edge regions of the bounding box
points_center = towers[i, :]
points_left = np.copy(points_center)
points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])
points_right = np.copy(points_center)
points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])
points_down = np.copy(points_center)
points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])
points_up = np.copy(points_center)
points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])
points = np.append(points_center,
np.append(np.append(points_left,
points_right,
axis=0),
np.append(points_down,
points_up,
axis=0),
axis=0),
axis=0)
我采用了Flabetvvibe的代码,该代码执行了loyd算法的迭代,并将其形成一种易于使用的方法。对于每次迭代,将调用先前的bounded_voronoi函数,然后为每个单元找到质心,并且它们将成为下一次迭代的新点集。 # Compute Voronoi
vor = sp.spatial.Voronoi(points)
# creates a new attibute for points that form the diagram within the region
vor.filtered_points = points_center
# grabs the first fifth of the regions, which are the original regions
vor.filtered_regions = np.array(vor.regions)[vor.point_region[:vor.npoints//5]]
return vor
只需获取当前区域的所有顶点,并将第一个顶点复制到末尾,以便第一个和最后一个顶点用于计算质心相同。
感谢Flabetvvibes和Energya。您的帖子/答案教会了我如何比它的文档更好地使用scipy的voronoi方法。我也将代码发布为一个单独的代码,放在其他任何要复制/粘贴的代码下面。
def generate_CVD(points, iterations, bounding_box):
p = copy.copy(points)
for i in range(iterations):
vor = bounded_voronoi(p, bounding_box)
centroids = []
for region in vor.filtered_regions:
# grabs vertices for the region and adds a duplicate
# of the first one to the end
vertices = vor.vertices[region + [region[0]], :]
centroid = centroid_region(vertices)
centroids.append(list(centroid[0, :]))
p = np.array(centroids)
return bounded_voronoi(p, bounding_box)