转换二进制搜索树双向链表

问题描述 投票:4回答:12

这个问题是在最近的一次采访中编码要求。

问:给定一个二叉树,写一个程序,将其转换为一个双向链表。在双向链表中的节点被布置在由Z字形级顺序遍历形成的序列

我的方法

我总是可以做树的曲折级序遍历并将其存储在数组中的,然后做一个双向链表。但对于就地解决问题的要求。任何人都可以解释的递归方法帮助应该使用?

binary-search-tree tree-traversal doubly-linked-list
12个回答
13
投票

这是递归approach.Note的是,这里的根将指向形成列表的一些插图中的元素。所以,仅仅从根遍历向后拿到头。

#define NODEPTR struct node*

NODEPTR convert_to_ll(NODEPTR root){
    if(root->left == NULL && root->right == NULL)
        return root;
    NODEPTR temp = NULL;
    if(root->left != NULL){
        temp = convert_to_ll(root->left);
        while(temp->right != NULL)
            temp = temp->right;
        temp->right = root;
        root->left = temp;
    }
    if(root->right != NULL){
        temp = convert_to_ll(root->right);
        while(temp->left != NULL)
            temp = temp->left;
        temp->left = root;
        root->right = temp;
    }
    return root;
    }

0
投票

希望这将有助于ü。

class Solution(){
public:
    TreeNode* convertBST2DLL(TreeNode* root){
        TreeNode left, right;
        convert(root, &left, &right);
        TreeNode* head = left.right;
        head->left = NULL;
        right.left->right = NULL;
        return head;
    }   
    void convert(TreeNode* root, TreeNode* left, TreeNode* right){
        if(root->left == NULL){
            left->right = root;
            root->left = left;
        }
        else{
            convert(root->left, left, root);
        }
        if(root->right == NULL){
            right->left = root;
            root->right = right;
        }
        else{
            convert(root->right, root, right);
        }
    }
};

0
投票

我意识到这是很老,但我解决这个,准备面试,我意识到,如果你想每次递归函数调用中服用,更新和返回链表的现任掌门人,这是很简单的。这也是更好,如果你有兴趣返回头使用相反的顺序遍历。经过头到递归函数也需要一个静态或全局变量保持。这里的Python代码:

def convert(n, head=None):
  if n.right:
    head = convert(n.right, head)
  if head:
    head.left = n
  n.right = head
  if n.left:
    head = convert(n.left, n)
  else:
    head = n
  return head

希望这是使用的人的。


0
投票

下面是Java代码。复杂度为O(N)。我还添加一些测试用例这个问题。

public class BinaryToDoubleLinkedList {

    static class Node {
        int value;
        Node left;
        Node right;

        public Node(int value, Node left, Node right) {
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }

    static class Pair {
        Node head;
        Node tail;

        public Pair(Node head, Node tail) {
            this.head = head;
            this.tail = tail;
        }
    }

    static Pair convertToDoubleLinkedList(Node root) {
        return convert(root);
    }

    static Pair convert(Node root) {
        if (root == null) return new Pair(null, null);

        Node head, last;

        Pair left = convert(root.left);
        if (left.tail != null) {
            left.tail.right = root;
            root.left = left.tail;
            head = left.head;
        } else {
            head = root;
        }

        Pair right = convert(root.right);
        if (right.head != null) {
            right.head.left = root;
            root.right = right.head;
            last = right.tail;
        } else {
            last = root;
        }

        return new Pair(head, last);
    }

    static void Print(Node root, boolean fromLeft) {
        System.out.println("---------");
        if (fromLeft) {
            while (root != null) {
                System.out.print(root.value + ",");
                root = root.right;
            }
        } else {
            while (root != null) {
                System.out.print(root.value + ",");
                root = root.left;
            }
        }

        System.out.println();
    }

    public static void main(String[] args) {
        test1();
        test2();
        test3();
    }

    // test 1: normal test case
    public static void test1() {
        Node root = new Node(10, null, null);
        root.left = new Node(12, null, null);
        root.right = new Node(15, null, null);

        root.left.left = new Node(25, null, null);
        root.left.right = new Node(30, null, null);
        root.right.left = new Node(36, null, null);

        Pair res = convertToDoubleLinkedList(root);
        Print(res.head, true);
        Print(res.tail, false);
    }

    // test 2: binary tree as linked list
    public static void test2() {
        Node root = new Node(1, null, null);
        root.left = new Node(2, null, null);
        root.left.left = new Node(3, null, null);
        root.left.left.left = new Node(4, null, null);

        Pair res = convertToDoubleLinkedList(root);
        Print(res.head, true);
        Print(res.tail, false);
    }

    // test 3: null and single
    public static void test3() {
        Node root = new Node(1, null, null);
        Pair res = convertToDoubleLinkedList(root);
        Print(res.head, true);
        Print(res.tail, false);

        res = convertToDoubleLinkedList(null);
        Print(res.head, true);
        Print(res.tail, false);
    }
}

4
投票

最简单的方法。在单序遍历和只有O(1)空间的复杂性,我们可以做到这一点。保持一个命名指针lastPointer和跟踪它访问每一个节点之后。使用左,右

public void toll(T n) {
    if (n != null) {
        toll(n.left);
        if(lastPointer==null){
            lastPointer=n;
        }else{
            lastPointer.right=n;
            n.left=lastPointer;
            lastPointer=n;
        }
        toll(n.right);
    }
}

3
投票

C ++代码:

 Node<T> *BTtoDoublyLLZigZagOrder(Node<T> *root)
 {
        if (root == 0)
            return 0;
        if (root->mLeft == 0 && root->mRight == 0)
            return root;

        queue<Node<T> *> q;
        q.push(root);
        Node<T> *head = root;
        Node<T> *prev = 0,*curr = 0;

        while(!q.empty())
        {
            curr = q.front();
            q.pop();
            if (curr->mLeft)
                q.push(curr->mLeft);
            if (curr->mRight)
                q.push(curr->mRight);
            curr->mRight = q.front();
            curr->mLeft = prev;
            prev = curr;
        }

        return head;
 }

2
投票

在斯坦福库链接提到的解决方案是BST到圆形DLL完美的解决方案,下面的解决方案是不完全的BST到圆形DLL转换但圆形DLL可以通过加入一个DLL的端部来实现。它不完全是曲折有序树对DLL转换了。

注意:此方法是不是从BST圆形DLL完美转换,但其简单易懂的黑客

JAVA代码

public Node bstToDll(Node root ){
        if(root!=null){
            Node lefthead = bstToDll(root.left); // traverse down to left 
            Node righthead = bstToDll(root.right); // traverse down to right
            Node temp = null;
            /*
             * lefthead represents head of link list created in left of node
             * righthead represents head of link list created in right
             * travel to end of left link list and add the current node in end
             */
            if(lefthead != null) {
                temp = lefthead;
                while(temp.next != null){
                    temp = temp.next;
                }
                temp.next = root;
            }else{
                lefthead = root;
            }
            root.prev = temp;
            /*
             *set the next node of current root to right head of right list
             */
            if(righthead != null){
                root.next = righthead;
                righthead.prev = root;
            }else{
                righthead = root;
            }
            return lefthead;// return left head as the head of the list added with current node
        }
        return null;
}

希望它可以帮助一些一


1
投票

反向序遍历没有全局变量 - 实现。在呼吁,空将被传递给正确的参数开始。最终的返回值是双向链表的头

public static Node ToDLL(Node node, Node right)
{
    if (node == null)
        return null;

    var rnd = ToDLL(node.Right, right);

    if (rnd != null)
    {
        node.Right = rnd;
        rnd.Left = node;
    }
    else
    {
        node.Right = right;
        if (right!= null)
            right.Left= node;
    }
    return ToDLL(node.Left, node) ?? node;
}

0
投票

我们将使用两个前哨淋巴结的头部和尾部,做树的中序遍历。我们第一次有头链接到最小的节点,反之亦然,并关联最小的节点尾,反之亦然。第一次后,我们将只需要直到遍历完毕重新连接当前节点和尾。穿越后我们将删除前哨淋巴结和头尾正确地重新连接。

public static Node binarySearchTreeToDoublyLinkedList(Node root) {

    // sentinel nodes
    Node head = new Node();
    Node tail = new Node();

    // in-order traversal
    binarySearchTreeToDoublyLinkedList(root, head, tail);

    // re-move the sentinels and re-link;
    head = head.right;
    tail = tail.left;

    if (head != null && tail != null) {
        tail.right = head;
        head.left = tail;
    }

    return head;
}

/** In-order traversal **/
private static void binarySearchTreeToDoublyLinkedList(Node currNode, Node head, Node tail) {
    if (currNode == null) {
        return;
    }


    // go left
    //

    binarySearchTreeToDoublyLinkedList(currNode.left, head, tail);

    // save right node for right traversal as we will be changing current
    // node's right to point to tail
    //

    Node right = currNode.right;

    // first time
    //

    if (head.right == null) {

        // fix head
        //

        head.right = currNode;
        currNode.left = head;

        // fix tail
        //

        tail.left = currNode;
        currNode.right = tail;

    } else {

        // re-fix tail
        //

        Node prev = tail.left;

        // fix current and tail
        //

        tail.left = currNode;
        currNode.right = tail;

        // fix current and previous
        //

        prev.right = currNode;
        currNode.left = prev;
    }

    // go right
    //

    binarySearchTreeToDoublyLinkedList(right, head, tail);
}

0
投票
node* convertToDLL(node* root, node*& head, node*& tail)
{
    //empty tree passed in, nothing to do
    if(root == NULL)
        return NULL;

    //base case
    if(root->prev == NULL && root->next == NULL)
        return root;

    node* temp = NULL;
    if(root->prev != NULL)
    {
        temp = convertToDLL(root->prev, head, tail);

        //new head of the final list, this will be the left most
        //node of the tree.
        if(head == NULL)
        {
            head=temp;
            tail=root;
        }

        //create the DLL of the left sub tree, and update t
        while(temp->next != NULL)
            temp = temp->next;
        temp->next = root;
        root->prev= temp;
        tail=root;
    }

    //create DLL for right sub tree
    if(root->next != NULL)
    {
        temp = convertToDLL(root->next, head, tail);
        while(temp->prev != NULL)
            temp = temp->prev;
        temp->prev = root;
        root->next = temp;

        //update the tail, this will be the node with the largest value in
        //right sub tree
        if(temp->next && temp->next->val > tail->val)
            tail = temp->next;
        else if(temp->val > tail->val)
            tail = temp;
    }
    return root;
}

void createCircularDLL(node* root, node*& head, node*& tail)
{
    convertToDLL(root,head,tail);

    //link the head and the tail
    head->prev=tail;
    tail->next=head;
}

int main(void)
{

    //create a binary tree first and pass in the root of the tree......
    node* head = NULL;
    node* tail = NULL;
    createCircularDLL(root, head,tail);

    return 1;
}

0
投票
struct node{
int value;
struct node *left;
struct node *right;
};
typedef struct node Node;

Node * create_node(int value){
  Node * temp =  (Node *)malloc(sizeof(Node));
  temp->value = value;
  temp->right= NULL;
  temp->left = NULL;
  return temp;
}
Node * addNode(Node *node, int value){
  if(node == NULL){
    return create_node(value);
  }
  else{
    if (node->value > value){
        node->left = addNode(node->left, value);
    }
    else{
        node->right = addNode(node->right, value);
    }
  }
  return node;
}

void treeToList(Node *node){

    Queue *queue = NULL;
    Node * last = NULL;
    if(node == NULL)
            return ;

    enqueue(&queue, node);
    while(!isEmpty(queue)){
       /* Take the first element and put 
          both left and right child on queue */
            node = front(queue);
            if(node->left)
                    enqueue(&queue, node->left);
            if(node->right)
                    enqueue(&queue, node->right);
            if(last != NULL)
                    last->right = node;
            node->left = last;
            last = node;
            dequeue(&queue);
      }
  } 
  /* Driver program for the function written above */
 int main(){
    Node *root = NULL;
   //Creating a binary tree
    root = addNode(root,30);
    root = addNode(root,20);
    root = addNode(root,15);
    root = addNode(root,25);
    root = addNode(root,40);
    root = addNode(root,37);
    root = addNode(root,45);

    treeToList(root);

    return 0;
}

队列的API的实现可以在http://www.algorithmsandme.com/2013/10/binary-search-tree-to-doubly-linked.html找到


0
投票

我们可以用序遍历并跟踪以前访问过的节点。对于每一个访问节点,一个节点权和当前节点左边可以分配。

void BST2DLL(node *root, node **prev, node **head)
{
    // Base case
    if (root == NULL) return;

    // Recursively convert left subtree
    BST2DLL(root->left, prev, head);

    if (*prev == NULL) // first iteration
        *head = root;
    else
    {
        root->left = *prev;
        (*prev)->right = root;
    }
    *prev = root; // save the prev pointer 

    // Finally convert right subtree
    BST2DLL(root->right, prev, head);
}
© www.soinside.com 2019 - 2024. All rights reserved.