使用标准Tensorflow:
import tensorflow as tf
x = tf.convert_to_tensor([0,1,2,3,4], dtype=tf.int64)
y = x + 10
sess = tf.InteractiveSession()
sess.run([
tf.local_variables_initializer(),
tf.global_variables_initializer(),
])
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
z = y.eval(feed_dict={x:[0,1,2,3,4]})
print(z)
print(type(z))
coord.request_stop()
coord.join(threads)
sess.close()
输出:
[10 11 12 13 14]
<class 'numpy.ndarray'>
急切执行:
import tensorflow as tf
tf.enable_eager_execution() # requires r1.7
x = tf.convert_to_tensor([0,1,2,3,4], dtype=tf.int64)
y = x + 10
print(y)
print(type(y))
输出:
tf.Tensor([10 11 12 13 14], shape=(5,), dtype=int64)
<class 'EagerTensor'>
如果我尝试y.eval()
,我得到NotImplementedError: eval not supported for Eager Tensors
。有没有办法转换这个?这使得Eager Tensorflow完全无价值。
编辑:
有一个函数tf.make_ndarray
应该将张量转换为numpy数组,但它会导致AttributeError: 'EagerTensor' object has no attribute 'tensor_shape'
。
有一个.numpy()
功能,你可以使用,或者你也可以做numpy.array(y)
。例如:
import tensorflow as tf
import numpy as np
tf.enable_eager_execution()
x = tf.constant([1., 2.])
print(type(x)) # <type 'EagerTensor'>
print(type(x.numpy())) # <type 'numpy.ndarray'>
print(type(np.array(x))) # <type 'numpy.ndarray'>
见the section in the eager execution guide。
希望有所帮助。