我正在尝试使用C中的BackTracking解决以下问题,但我不知道如何从这里继续...
问题是:
克里斯正计划在一个有N个城市的国家旅行。他将从矩阵NxN获得帮助,该单元格(I,J)代表从城市I到城市J的道路长度。从城市A到城市B的道路长度与从城市B到城市A的道路长度相比有所不同。从同一来源城市返回(直接)返回的道路为0。克里斯注意到,从A到B的最短道路始终不是两个城市之间的直接道路。您将需要帮助Chris查找最短路径。编写一个函数,在给定矩阵NxN的情况下检查最短地图,该矩阵存储道路长度的值。注意:N定义为4。
示例:
如果给定以下矩阵,则从0到1的最短路径将到达城市0,然后是3,然后是1:
0 5 2 2
1 0 1 1
1 2 0 1
1 1 2 0
她是我的代码:
int ShortestPath (int SourceCity, int DestinationCity, int Distance [][N], bool Chosen[][N])
{
int Path=0;
if (SourceCity==DestinationCity)
{
Distance[SourceCity][DestinationCity]=true;
return 0;
}
for (int i=0;i<N;i++)
{
for (int j=0;j<N;j++)
{
Path += Distance[i][j];
if (!Chosen[i][j])
{
Chosen[i][j] = true;
ShortestPath(i, DestinationCity, Distance, Chosen);
}
}
}
if (Path>=Distance[SourceCity][DestinationCity])
{
Chosen[SourceCity,DestinationCity]=false;
return Distance[SourceCity][DestinationCity];
}
}
注意:选择的矩阵表示我是否选择了一条特定的道路(其初始值全为假)
这里是建议的解决方案。这是Dijkstra算法的实现,它找到了最短的路径。
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <stdbool.h>
// number of nodes
#define N 4
// distance matrix from i to j for d[i][j]
int d[N][N] = {
{0, 5, 2, 2},
{1, 0, 1, 1},
{1, 2, 0, 1},
{1, 1, 2, 0},
};
// shortestPath stores in path the shortest path from start node to
// final node using the distance matrix d. It returns the number of
// nodes in the path.
int shortestPath(int d[N][N], int start, int final, int path[N]){
// node previous to node i
int prev[N];
// initialize distance from node i to start as infinite
int dist[N];
for (int i = 0; i < N; i++)
dist[i] = INT_MAX;
dist[start] = 0;
// initialize list of nodes done
bool done[N];
for (int i = 0; i < N; i++)
done[i] = false;
done[start] = true;
int nDone = 1;
// while we haven’t done all nodes
while (nDone < N) {
// find not yet done node with minimal distance to start node
int minDist = INT_MAX;
int n; // node with minimum distance
for (int i = 0; i < N; i++)
if (!done[i] && dist[i] < minDist)
minDist = dist[n = i];
done[n] = true;
nDone++;
// we can stop when final node is done
if (n == final)
break;
// for every node j...
for (int j = 0; j < N; j++) {
// if node j is not yet done,
// and distance from start to j through n is smaller to known
if (!done[j] && dist[j] > dist[n] + d[n][j]) {
// set new shortest distance
dist[j] = dist[n] + d[n][j];
// set node n as previous to node j
prev[j] = n;
}
}
}
// get path [start, ..., final]
int j = N;
for (int i = final; i != start; i = prev[i])
path[--j] = i;
path[--j] = start;
if (j == 0)
return N;
int n = N-j;
for (int i = 0; i < n; i++, j++)
path[i] = path[j];
return n;
}
int main() {
int path[N];
int n = shortestPath(d, 0, 1, path);
printf("path: %d", path[0]);
for (int i = 1; i < n; i++)
printf("->%d", path[i]);
printf("\n");
return 0;
}
输出
path: 0->3->1