1970/6000 [========>.....................] - ETA: 1:50:11 - loss: 1.2256 - accuracy: 0.5956
1971/6000 [========>.....................] - ETA: 1:50:08 - loss: 1.2252 - accuracy: 0.5958
1972/6000 [========>.....................] - ETA: 1:50:08 - loss: 1.2248 - accuracy: 0.5960
1973/6000 [========>.....................] - ETA: 1:50:06 - loss: 1.2245 - accuracy: 0.5962
1974/6000 [========>.....................] - ETA: 1:50:04 - loss: 1.2241 - accuracy: 0.5964
1975/6000 [========>.....................] - ETA: 1:50:02 - loss: 1.2243 - accuracy: 0.5961
1976/6000 [========>.....................] - ETA: 1:50:00 - loss: 1.2239 - accuracy: 0.5963
1977/6000 [========>.....................] - ETA: 1:49:58 - loss: 1.2236 - accuracy: 0.5965
1978/6000 [========>.....................] - ETA: 1:49:57 - loss: 1.2241 - accuracy: 0.5962
1979/6000 [========>.....................] - ETA: 1:49:56 - loss: 1.2237 - accuracy: 0.5964
1980/6000 [========>.....................] - ETA: 1:49:55 - loss: 1.2242 - accuracy: 0.5961
1981/6000 [========>.....................] - ETA: 1:49:53 - loss: 1.2252 - accuracy: 0.5958
1982/6000 [========>.....................] - ETA: 1:49:52 - loss: 1.2257 - accuracy: 0.5955
我等待5-6分钟,但似乎什么也没发生。我试图解决像1.将steps_per_epoch更改为100并将epoch增大为202.我认为这是功能ReduceLROnPlateau的问题,因此我将添加冷却时间= 1但是2解决方案不能解决这个问题
我的实验室i5-8300hGtx 1060 6GBkeras 2.0使用gpu进行编译
我的代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import keras
import tensorflow as tf
from skimage import exposure, color
from keras.optimizers import Adam
from tqdm import tqdm
from keras.models import Model
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D,Convolution2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, Callback
from keras import regularizers
from keras.applications.densenet import DenseNet121
from keras_preprocessing.image import ImageDataGenerator
from sklearn.utils import class_weight
from collections import Counter
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth=True
session = tf.compat.v1.Session(config=config)
# Histogram equalization
def HE(img):
img_eq = exposure.equalize_hist(img)
return img_eq
def plotImages(images_arr):
fig, axes = plt.subplots(1, 5, figsize=(20,20))
axes = axes.flatten()
for img, ax in zip( images_arr, axes):
ax.imshow(img)
ax.axis('off')
plt.tight_layout()
plt.show()
train_datagen = ImageDataGenerator(
rescale=1. / 255,
rotation_range=40,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest',
preprocessing_function=HE,
)
validation_datagen = ImageDataGenerator(
rescale=1./255
)
test_datagen = ImageDataGenerator(
rescale=1./255
)
#get image and label with augmentation
train = train_datagen.flow_from_directory(
'train/train_deep/',
target_size=(224,224),
class_mode='categorical',
shuffle=False,
batch_size = 20,
)
test = test_datagen.flow_from_directory(
'test_deep/',
batch_size=1,
target_size = (224,224),
)
val = validation_datagen.flow_from_directory(
'train/validate_deep/',
target_size=(224,224),
batch_size = 20,
)
#Training
X_train, y_train = next(train)
class_names = ['No DR', 'Mild', 'Moderate', 'Severe', 'Proliferative DR']
counter = Counter(train.classes)
class_weights = class_weight.compute_class_weight(
'balanced',
np.unique(train.classes),
train.classes)
#X_test , y_test = next(test)
#X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],X_test.shape[2]))
#Training parameter
batch_size =32
Epoch = 2
model = DenseNet121(include_top=True, weights=None, input_tensor=None, input_shape=(224,224,3), pooling=None, classes=5)
model.compile(loss='categorical_crossentropy',
optimizer=Adam(learning_rate=0.01),
metrics=['accuracy'])
model.summary()
filepath="weights-improvement-{epoch:02d}-{val_loss:.2f}.hdf5"
checkpointer = ModelCheckpoint(filepath,monitor='val_loss', verbose=1, save_best_only=True,save_weights_only=True)
lr_reduction = ReduceLROnPlateau(monitor='val_loss', patience=5, verbose=2, factor=0.2,cooldown=1)
callbacks_list = [checkpointer, lr_reduction]
#Validation
X_val , y_val = next(val)
#history = model.fit(X_train,y_train,epochs=Epoch,validation_data = (X_val,y_val))
history = model.fit_generator(
train,
epochs=Epoch,
steps_per_epoch=6000,
class_weight=class_weights,
validation_data=val,
validation_steps=1000,
use_multiprocessing = False,
max_queue_size=100,
workers = 1,
callbacks=callbacks_list
)
# Score trained model.
scores = model.evaluate(X_val, y_val, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
#predict
test.reset()
pred=model.predict_generator(test,
steps=25,)
print(pred)
for i in pred:
print(np.argmax(i))
我尝试训练我的6000训练数据集和1000验证数据集,但我有一个问题,它只是在训练过程中死机而没有错误消息1970/6000 [========> ........ ......................] ...