我在 LSTM 的嵌入层中使用手套嵌入。我编写了一个构建模型的函数,如下所示:
def build_model(hp):
model = keras.Sequential()
model.add(Embedding(input_dim=vocab_size, # Size of the vocabulary
output_dim=EMBEDDING_DIM, # Length of the vector for each word
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH, trainable=False))
# model.add(Embedding(input_dim=vocab_size, # Size of the vocabulary
# output_dim=50, # Length of the vector for each word
# input_length = MAX_SEQUENCE_LENGTH)) # Maximum length of a sequence
model.add(SpatialDropout1D(hp.Choice('sdropout_', values=[0.2, 0.3, 0.4, 0.5, 0.6])
)
)
model.add(LSTM(hp.Int('units_', min_value=30, max_value=70, step=10), kernel_initializer='random_normal', dropout=0.5, recurrent_dropout=0.5))
counter = 0
for i in range(hp.Int('num_layers', 1, 5)):
if counter == 0:
model.add(layers.Dense(units=hp.Int('units_', min_value=16, max_value=512, step=32),
kernel_initializer='random_normal',
#kernel_initializer=hp.Choice('kernel_initializer_', ['random_normal', 'random_uniform', 'zeros']),
#bias_initializer=hp.Choice('bias_initializer_', ['random_normal', 'random_uniform', 'zeros']),
input_shape=y_train.shape,
#kernel_regularizer=regularizers.l2(0.03),
kernel_regularizer=keras.regularizers.l2(hp.Choice('l2_value', values = [1e-2, 3e-3, 2e-3, 1e-3, 1e-4])),
#kernel_regularizer=regularizers.L1L2(l1=1e-5, l2=1e-4),
#bias_regularizer=regularizers.L2(1e-4),
#activity_regularizer=regularizers.L2(1e-5),
activation=hp.Choice('dense_activation_' + str(i), values=['relu', 'tanh', 'sigmoid'], default='relu')
)
)
model.add(layers.Dropout(rate=hp.Float('dropout_' + str(i), min_value=0.0, max_value=0.6, default=0.25, step=0.05)
)
)
else:
model.add(layers.Dense(units=hp.Int('units_' + str(i), min_value=12, max_value=512, step=32),
kernel_initializer='random_normal',
#kernel_initializer=hp.Choice('kernel_initializer_', ['random_normal', 'random_uniform', 'zeros']),
#bias_initializer=hp.Choice('bias_initializer_', ['random_normal', 'random_uniform', 'zeros']),
#kernel_regularizer=regularizers.l2(0.03),
kernel_regularizer=keras.regularizers.l2(hp.Choice('l2_value', values = [1e-2, 3e-3, 2e-3, 1e-3, 1e-4])),
#kernel_regularizer=regularizers.L1L2(l1=1e-5, l2=1e-4),
#bias_regularizer=regularizers.L2(1e-4),
#activity_regularizer=regularizers.L2(1e-5),
activation=hp.Choice('dense_activation_' + str(i), values=['relu', 'tanh', 'sigmoid'], default='relu')
)
)
model.add(layers.Dropout(rate=hp.Float('dropout_' + str(i), min_value=0.0, max_value=0.5, default=0.25, step=0.05)
)
)
counter+=1
model.add(layers.Dense(classes, activation='softmax'))
optimizer = hp.Choice('optimizer', values = ['adam'
# ,'sgd', 'rmsprop', 'adadelta'
])
lr = hp.Choice('learning_rate', values=[1e-2, 1e-3])
if optimizer == 'adam':
optimizer = keras.optimizers.Adam(learning_rate=lr)
#elif optimizer == 'sgd':
# optimizer = keras.optimizers.SGD(learning_rate=lr)
#elif optimizer == 'rmsprop':
# optimizer = keras.optimizers.RMSprop(learning_rate=lr)
# else:
# optimizer = keras.optimizers.Adadelta(learning_rate=lr)
model.compile(
optimizer=optimizer,
loss='sparse_categorical_crossentropy',
#steps_per_execution=32,
metrics=['accuracy']
)
return model
执行上述函数后,我构建了一个调谐器对象。
tuner = RandomSearch(
build_model,
objective='val_accuracy', # Set the objective to 'accuracy'
#objective='val_loss', # Set the objective to 'val_loss'
max_trials=3, # Set the maximum number of trials
executions_per_trial=3, # Set the number of executions per trial
overwrite=True,
directory='my_dir', # Set the directory where the results are stored
project_name='consumer_complaints' # Set the project name
)
# Display the search space summary
tuner.search_space_summary()
但是在这一步之后,当我运行下面的代码来搜索超参数空间时。
# Assume pad_data_train, pad_data_testare your data
tuner.search(pad_data_train, y_train,
epochs=5,
validation_data=(pad_data_test, y_test)
,
batch_size = 64
)
我收到如下所示的错误。我似乎无法弄清楚我做错了什么。
Traceback (most recent call last): File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 270, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs) File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 235, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs) File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/tuner.py", line 287, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs) File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/tuner.py", line 214, in _build_and_fit_model
results = self.hypermodel.fit(hp, model, *args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/hypermodel.py", line 144, in fit
return model.fit(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None File "/opt/conda/lib/python3.10/site-packages/tensorflow/python/eager/execute.py", line 53, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error:
Detected at node 'sequential/embedding/embedding_lookup' defined at (most recent call last):
File "/opt/conda/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/opt/conda/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/opt/conda/lib/python3.10/site-packages/ipykernel_launcher.py", line 17, in <module>
app.launch_new_instance()
File "/opt/conda/lib/python3.10/site-packages/traitlets/config/application.py", line 1043, in launch_instance
app.start()
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelapp.py", line 736, in start
self.io_loop.start()
File "/opt/conda/lib/python3.10/site-packages/tornado/platform/asyncio.py", line 195, in start
self.asyncio_loop.run_forever()
File "/opt/conda/lib/python3.10/asyncio/base_events.py", line 603, in run_forever
self._run_once()
File "/opt/conda/lib/python3.10/asyncio/base_events.py", line 1909, in _run_once
handle._run()
File "/opt/conda/lib/python3.10/asyncio/events.py", line 80, in _run
self._context.run(self._callback, *self._args)
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 516, in dispatch_queue
await self.process_one()
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 505, in process_one
await dispatch(*args)
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 412, in dispatch_shell
await result
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 740, in execute_request
reply_content = await reply_content
File "/opt/conda/lib/python3.10/site-packages/ipykernel/ipkernel.py", line 422, in do_execute
res = shell.run_cell(
File "/opt/conda/lib/python3.10/site-packages/ipykernel/zmqshell.py", line 546, in run_cell
return super().run_cell(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3009, in run_cell
result = self._run_cell(
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3064, in _run_cell
result = runner(coro)
File "/opt/conda/lib/python3.10/site-packages/IPython/core/async_helpers.py", line 129, in _pseudo_sync_runner
coro.send(None)
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3269, in run_cell_async
has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3448, in run_ast_nodes
if await self.run_code(code, result, async_=asy):
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3508, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "/tmp/ipykernel_42/3795112731.py", line 2, in <module>
tuner.search(pad_data_train, y_train,
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 230, in search
self._try_run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 270, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 235, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/tuner.py", line 287, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/tuner.py", line 214, in _build_and_fit_model
results = self.hypermodel.fit(hp, model, *args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/hypermodel.py", line 144, in fit
return model.fit(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1742, in fit
tmp_logs = self.train_function(iterator)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1338, in train_function
return step_function(self, iterator)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1322, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1303, in run_step
outputs = model.train_step(data)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1080, in train_step
y_pred = self(x, training=True)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 569, in __call__
return super().__call__(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/base_layer.py", line 1150, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 96, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/sequential.py", line 405, in call
return super().call(inputs, training=training, mask=mask)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/functional.py", line 512, in call
return self._run_internal_graph(inputs, training=training, mask=mask)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/functional.py", line 669, in _run_internal_graph
outputs = node.layer(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/base_layer.py", line 1150, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 96, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/layers/core/embedding.py", line 272, in call
out = tf.nn.embedding_lookup(self.embeddings, inputs) Node: 'sequential/embedding/embedding_lookup' indices[41,8] = 6402 is not in [0, 5201) [[{{node sequential/embedding/embedding_lookup}}]] [Op:__inference_train_function_14440]
--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[43], line 2
1 # Assume x_train, y_train are your data
----> 2 tuner.search(pad_data_train, y_train,
3 epochs=5,
4 validation_data=(pad_data_test, y_test)
5 ,
6 batch_size = 64
7 )
File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py:231, in BaseTuner.search(self, *fit_args, **fit_kwargs)
229 self.on_trial_begin(trial)
230 self._try_run_and_update_trial(trial, *fit_args, **fit_kwargs)
--> 231 self.on_trial_end(trial)
232 self.on_search_end()
File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py:335, in BaseTuner.on_trial_end(self, trial)
329 def on_trial_end(self, trial):
330 """Called at the end of a trial.
331
332 Args:
333 trial: A `Trial` instance.
334 """
--> 335 self.oracle.end_trial(trial)
336 # Display needs the updated trial scored by the Oracle.
337 self._display.on_trial_end(self.oracle.get_trial(trial.trial_id))
File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/oracle.py:107, in synchronized.<locals>.wrapped_func(*args, **kwargs)
105 LOCKS[oracle].acquire()
106 THREADS[oracle] = thread_name
--> 107 ret_val = func(*args, **kwargs)
108 if need_acquire:
109 THREADS[oracle] = None
File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/oracle.py:434, in Oracle.end_trial(self, trial)
432 if not self._retry(trial):
433 self.end_order.append(trial.trial_id)
--> 434 self._check_consecutive_failures()
436 self._save_trial(trial)
437 self.save()
File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/oracle.py:386, in Oracle._check_consecutive_failures(self)
384 consecutive_failures = 0
385 if consecutive_failures == self.max_consecutive_failed_trials:
--> 386 raise RuntimeError(
387 "Number of consecutive failures excceeded the limit "
388 f"of {self.max_consecutive_failed_trials}.\n"
389 + trial.message
390 )
RuntimeError: Number of consecutive failures excceeded the limit of 3. Traceback (most recent call last): File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 270, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs) File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 235, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs) File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/tuner.py", line 287, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs) File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/tuner.py", line 214, in _build_and_fit_model
results = self.hypermodel.fit(hp, model, *args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/hypermodel.py", line 144, in fit
return model.fit(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None File "/opt/conda/lib/python3.10/site-packages/tensorflow/python/eager/execute.py", line 53, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error:
Detected at node 'sequential/embedding/embedding_lookup' defined at (most recent call last):
File "/opt/conda/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/opt/conda/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/opt/conda/lib/python3.10/site-packages/ipykernel_launcher.py", line 17, in <module>
app.launch_new_instance()
File "/opt/conda/lib/python3.10/site-packages/traitlets/config/application.py", line 1043, in launch_instance
app.start()
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelapp.py", line 736, in start
self.io_loop.start()
File "/opt/conda/lib/python3.10/site-packages/tornado/platform/asyncio.py", line 195, in start
self.asyncio_loop.run_forever()
File "/opt/conda/lib/python3.10/asyncio/base_events.py", line 603, in run_forever
self._run_once()
File "/opt/conda/lib/python3.10/asyncio/base_events.py", line 1909, in _run_once
handle._run()
File "/opt/conda/lib/python3.10/asyncio/events.py", line 80, in _run
self._context.run(self._callback, *self._args)
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 516, in dispatch_queue
await self.process_one()
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 505, in process_one
await dispatch(*args)
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 412, in dispatch_shell
await result
File "/opt/conda/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 740, in execute_request
reply_content = await reply_content
File "/opt/conda/lib/python3.10/site-packages/ipykernel/ipkernel.py", line 422, in do_execute
res = shell.run_cell(
File "/opt/conda/lib/python3.10/site-packages/ipykernel/zmqshell.py", line 546, in run_cell
return super().run_cell(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3009, in run_cell
result = self._run_cell(
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3064, in _run_cell
result = runner(coro)
File "/opt/conda/lib/python3.10/site-packages/IPython/core/async_helpers.py", line 129, in _pseudo_sync_runner
coro.send(None)
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3269, in run_cell_async
has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3448, in run_ast_nodes
if await self.run_code(code, result, async_=asy):
File "/opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3508, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "/tmp/ipykernel_42/3795112731.py", line 2, in <module>
tuner.search(pad_data_train, y_train,
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 230, in search
self._try_run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 270, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py", line 235, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/tuner.py", line 287, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/tuner.py", line 214, in _build_and_fit_model
results = self.hypermodel.fit(hp, model, *args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras_tuner/engine/hypermodel.py", line 144, in fit
return model.fit(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1742, in fit
tmp_logs = self.train_function(iterator)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1338, in train_function
return step_function(self, iterator)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1322, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1303, in run_step
outputs = model.train_step(data)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 1080, in train_step
y_pred = self(x, training=True)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/training.py", line 569, in __call__
return super().__call__(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/base_layer.py", line 1150, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 96, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/sequential.py", line 405, in call
return super().call(inputs, training=training, mask=mask)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/functional.py", line 512, in call
return self._run_internal_graph(inputs, training=training, mask=mask)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/functional.py", line 669, in _run_internal_graph
outputs = node.layer(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/engine/base_layer.py", line 1150, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 96, in error_handler
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/keras/src/layers/core/embedding.py", line 272, in call
out = tf.nn.embedding_lookup(self.embeddings, inputs) Node: 'sequential/embedding/embedding_lookup' indices[41,8] = 6402 is not in [0, 5201) [[{{node sequential/embedding/embedding_lookup}}]] [Op:__inference_train_function_14440]
嵌入层是用
input_dim=vocab_size
定义的,但我在您提供的代码片段中没有看到vocab_size
的定义。
试试这个:
def build_model(hp):
model = keras.Sequential()
model.add(Embedding(
input_dim=vocab_size, # Make sure vocab_size is defined
output_dim=EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=False,
input_shape=(MAX_SEQUENCE_LENGTH,) # Add input_shape parameter
))
# Rest of your code remains unchanged...
另请确保替换
MAX_SEQUENCE_LENGTH
并为 vocab_size
提供有效值。进行这些更改后,尝试再次运行超参数调整过程。祝你好运。