我正在安装train_generator,并通过自定义回调,我想在validation_generator上计算自定义指标。如何在自定义回调中访问params validation_steps
和validation_data
?它不是在self.params
,也不能在self.model
找到它。这就是我想做的事情。任何不同的方法都会受到欢迎。
model.fit_generator(generator=train_generator,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_steps,
callbacks=[CustomMetrics()])
class CustomMetrics(keras.callbacks.Callback):
def on_epoch_end(self, batch, logs={}):
for i in validation_steps:
# features, labels = next(validation_data)
# compute custom metric: f(features, labels)
return
努力:2.1.1
更新
我设法将验证数据传递给自定义回调的构造函数。但是,这会导致令人讨厌的“内核似乎已经死亡。它会自动重启”。信息。我怀疑这是否是正确的方法。有什么建议吗?
class CustomMetrics(keras.callbacks.Callback):
def __init__(self, validation_generator, validation_steps):
self.validation_generator = validation_generator
self.validation_steps = validation_steps
def on_epoch_end(self, batch, logs={}):
self.scores = {
'recall_score': [],
'precision_score': [],
'f1_score': []
}
for batch_index in range(self.validation_steps):
features, y_true = next(self.validation_generator)
y_pred = np.asarray(self.model.predict(features))
y_pred = y_pred.round().astype(int)
self.scores['recall_score'].append(recall_score(y_true[:,0], y_pred[:,0]))
self.scores['precision_score'].append(precision_score(y_true[:,0], y_pred[:,0]))
self.scores['f1_score'].append(f1_score(y_true[:,0], y_pred[:,0]))
return
metrics = CustomMetrics(validation_generator, validation_steps)
model.fit_generator(generator=train_generator,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_steps,
shuffle=True,
callbacks=[metrics],
verbose=1)
这是如何做:
from sklearn.metrics import r2_score
class MetricsCallback(keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
if epoch:
print(self.validation_data[0])
x_test = self.validation_data[0]
y_test = self.validation_data[1]
predictions = self.model.predict(x_test)
print('r2:', r2_score(prediction, y_test).round(2))
model.fit( ..., callbacks=[MetricsCallback()])
硬2.2.4
您可以直接在self.validation_data上进行迭代,以在每个时期结束时聚合所有验证数据。如果要在整个验证数据集中计算精度,调用和F1:
# Validation metrics callback: validation precision, recall and F1
# Some of the code was adapted from https://medium.com/@thongonary/how-to-compute-f1-score-for-each-epoch-in-keras-a1acd17715a2
class Metrics(callbacks.Callback):
def on_train_begin(self, logs={}):
self.val_f1s = []
self.val_recalls = []
self.val_precisions = []
def on_epoch_end(self, epoch, logs):
# 5.4.1 For each validation batch
for batch_index in range(0, len(self.validation_data)):
# 5.4.1.1 Get the batch target values
temp_targ = self.validation_data[batch_index][1]
# 5.4.1.2 Get the batch prediction values
temp_predict = (np.asarray(self.model.predict(
self.validation_data[batch_index][0]))).round()
# 5.4.1.3 Append them to the corresponding output objects
if(batch_index == 0):
val_targ = temp_targ
val_predict = temp_predict
else:
val_targ = np.vstack((val_targ, temp_targ))
val_predict = np.vstack((val_predict, temp_predict))
val_f1 = round(f1_score(val_targ, val_predict), 4)
val_recall = round(recall_score(val_targ, val_predict), 4)
val_precis = round(precision_score(val_targ, val_predict), 4)
self.val_f1s.append(val_f1)
self.val_recalls.append(val_recall)
self.val_precisions.append(val_precis)
# Add custom metrics to the logs, so that we can use them with
# EarlyStop and csvLogger callbacks
logs["val_f1"] = val_f1
logs["val_recall"] = val_recall
logs["val_precis"] = val_precis
print("— val_f1: {} — val_precis: {} — val_recall {}".format(
val_f1, val_precis, val_recall))
return
valid_metrics = Metrics()
然后,您可以将valid_metrics添加到回调参数:
your_model.fit_generator(..., callbacks = [valid_metrics])
如果您希望其他回调使用这些度量,请务必将其置于回调的开头。
我正在锁定同一问题的解决方案,然后我在接受的答案here找到你的和另一个解决方案。如果第二个解决方案有效,我认为这将比“在纪元结束时”再次彻底验证所有验证更好
我们的想法是将目标和预占义占位符保存在变量中,并通过“批处理结束时”的自定义回调更新变量