3D对象以看起来像2D对象的方式着色

问题描述 投票:0回答:2

我正在使用以下着色器源代码来实现顶点和片段。

顶点着色器源:

#define highp
attribute highp vec3 position;
uniform highp mat4 mvp;
void main(void)
{
    gl_Position = mvp * vec4(position, 1.0);
}

片段着色器源:

#define highp
uniform highp vec3 color;
void main(void)
{
    gl_FragColor = vec4(color, 1.0);
}

但是,着色器无法正常工作。如下面的屏幕截图所示,3D对象的颜色就像2D对象一样:

3D object is colored like a 2D object


glGetShaderivGL_COMPILE_STATUS返回success == TRUE,因此没有着色器编译错误。

glGetShaderiv(shaderObj, GL_COMPILE_STATUS, &success);

我没有在代码中尝试glGetError()。我要去尝试一下。但我怀疑我没有收到任何OpenGL错误。


我相信我需要调整顶点和片段着色器中的color。我应该如何调整着色器源中的颜色?任何人都可以通过暗示来帮助我。到目前为止,我无法通过修改源来解决问题。


UPDATE

现在使用@ Rabbid76的help,3D对象看起来很棒:

3D object looks good now :)

我正在使用@ Rabbid76代码进行一些小修改:将#version 130添加到顶点和片段着色器源的顶部。看起来我的英特尔显卡需要#version 130指令,否则会引发一些警告和错误:

警告:片段着色器中不支持扩展“GL_OES_standard_derivative”

#version 130指令解决了上述警告及其后续错误。

opengl-es glsl shader fragment-shader lighting
2个回答
5
投票

您的着色器工作正常。看起来它是2D,因为您的着色器中没有任何光照。均匀颜色的对象将看起来是2D,因为没有深度线索,例如自阴影或镜面反射高光等。


3
投票

根据评论:

我正在研究照明,但它似乎是一个很大的话题。我想知道你是否可以引导我使用最简单的照明代码,这在我的情况下是可行的

从观点来看,一个简单的lambertian diffuse“假”光。可以通过片段着色器中的视图空间位置的偏导数近似地计算表面法线向量。偏导数可以通过函数dFdx and dFdy得到。为此,需要OpenGL 2.0,OpenGL ES 3.0或OES_standard_derivatives扩展:

顶点着色器

#define highp

attribute highp vec3 position;

varying vec4 v_clip_pos;

uniform highp mat4 mvp;

void main(void)
{
    v_clip_pos  = mvp * vec4(position, 1.0);
    gl_Position = v_clip_pos;
}

片段着色器

#extension GL_OES_standard_derivatives : enable

varying vec4 v_clip_pos;

uniform highp vec3 color;

void main()
{
    vec3  ndc_pos = v_clip_pos.xyz / v_clip_pos.w;
    vec3  dx      = dFdx( ndc_pos );
    vec3  dy      = dFdy( ndc_pos );

    vec3 N = normalize(cross(dx, dy));
    N *= sign(N.z);
    vec3 L = vec3(0.0, 0.0, 1.0); 
    float NdotL = dot(N, L); 

    vec3 diffuse_color = color * NdotL;
    gl_FragColor       = vec4( diffuse_color.rgb, 1.0 );
} 

请参阅演示着色器的WebGL示例:

var readInput = true;
  function changeEventHandler(event){
    readInput = true;
  }
  
  (function loadscene() {
  
  var gl, progDraw, vp_size;
  var bufCube = {};
  
  function render(delteMS){

      Camera.create();
      Camera.vp = vp_size;
          
      gl.viewport( 0, 0, vp_size[0], vp_size[1] );
      gl.enable( gl.DEPTH_TEST );
      gl.clearColor( 0.0, 0.0, 0.0, 1.0 );
      gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT );

      // set up draw shader
      ShaderProgram.Use( progDraw );
      ShaderProgram.SetUniformM44( progDraw, "u_projectionMat44", Camera.Perspective() );
      ShaderProgram.SetUniformM44( progDraw, "u_viewMat44", Camera.LookAt() );
      var modelMat = IdentityMat44()
      modelMat = RotateAxis( modelMat, CalcAng( delteMS, 13.0 ), 0 );
      modelMat = RotateAxis( modelMat, CalcAng( delteMS, 17.0 ), 1 );
      ShaderProgram.SetUniformM44( progDraw, "u_modelMat44", modelMat );
      ShaderProgram.SetUniformF3( progDraw, "color", [0.9, 0.9, 0.5] );
      
      // draw scene
      VertexBuffer.Draw( bufCube );

      requestAnimationFrame(render);
  }
  
  function resize() {
      //vp_size = [gl.drawingBufferWidth, gl.drawingBufferHeight];
      vp_size = [window.innerWidth, window.innerHeight]
      canvas.width = vp_size[0];
      canvas.height = vp_size[1];
  }
  
  function initScene() {
  
      canvas = document.getElementById( "canvas");
      gl = canvas.getContext( "experimental-webgl" );
      if ( !gl )
        return null;
      var ext_standard_derivatives = gl.getExtension( "OES_standard_derivatives" );  // dFdx, dFdy
      if (!ext_standard_derivatives)
          alert('no standard derivatives support (no dFdx, dFdy)');
      
      progDraw = ShaderProgram.Create( 
        [ { source : "draw-shader-vs", stage : gl.VERTEX_SHADER },
          { source : "draw-shader-fs", stage : gl.FRAGMENT_SHADER }
        ] );
      if ( !progDraw.progObj )
          return null;
      progDraw.inPos = ShaderProgram.AttributeIndex( progDraw, "inPos" );
      progDraw.inNV  = ShaderProgram.AttributeIndex( progDraw, "inNV" );
     // create sphere
      var layer_size = 16, circum_size = 32;
      var rad_circum = 1.0;
      var rad_tube = 0.5;
      var sphere_pts = [];
      var sphere_nv = [];
      sphere_pts.push( 0.0, 0.0, -rad_circum );
      sphere_nv.push( 0.0, 0.0, -1.0 );
      for ( var i_l = 1; i_l < layer_size; ++ i_l ) {
          var angH = (1.0 - i_l / layer_size) * Math.PI;
          var h = Math.cos( angH );
          var r = Math.sin( angH );
          for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
              var circumX = Math.cos(2 * Math.PI * i_c / circum_size);
              var circumY = Math.sin(2 * Math.PI * i_c / circum_size);
              sphere_pts.push( r * circumX * rad_circum, r * circumY * rad_circum, h * rad_circum );
              sphere_nv.push( r * circumX, r * circumY, h );
          }
      }
      sphere_pts.push( 0.0, 0.0, rad_circum );
      sphere_nv.push( 0.0, 0.0, 1.0 );
      var sphere_inx = [];
      for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
          sphere_inx.push( i_c+1, 0, (i_c+1) % circum_size + 1 )
      }
      for ( var i_l = 0; i_l < layer_size-2; ++ i_l ) {
          var l1 = i_l * circum_size + 1;
          var l2 = (i_l+1) * circum_size + 1
          for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
              var i_n = (i_c+1) % circum_size;
              sphere_inx.push( l1+i_c, l1+i_n, l2+i_c, l1+i_n, l2+i_n, l2+i_c );
          }
      }
      for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
          var i_start = 1 + (layer_size-2) * circum_size;
          var i_n = (i_c+1) % circum_size;
          sphere_inx.push( i_start + i_c, i_start + i_n, sphere_pts.length/3-1 );
      }
      bufCube = VertexBuffer.Create(
      [ { data : sphere_pts, attrSize : 3, attrLoc : progDraw.inPos },
        { data : sphere_nv,  attrSize : 3, attrLoc : progDraw.inNV } ],
        sphere_inx );
        
      window.onresize = resize;
      resize();
      requestAnimationFrame(render);
  }
  
  function Fract( val ) { 
      return val - Math.trunc( val );
  }
  function CalcAng( deltaTime, intervall ) {
      return Fract( deltaTime / (1000*intervall) ) * 2.0 * Math.PI;
  }
  function CalcMove( deltaTime, intervall, range ) {
      var pos = self.Fract( deltaTime / (1000*intervall) ) * 2.0
      var pos = pos < 1.0 ? pos : (2.0-pos)
      return range[0] + (range[1] - range[0]) * pos;
  }    
  function EllipticalPosition( a, b, angRag ) {
      var a_b = a * a - b * b
      var ea = (a_b <= 0) ? 0 : Math.sqrt( a_b );
      var eb = (a_b >= 0) ? 0 : Math.sqrt( -a_b );
      return [ a * Math.sin( angRag ) - ea, b * Math.cos( angRag ) - eb, 0 ];
  }
  
  glArrayType = typeof Float32Array !="undefined" ? Float32Array : ( typeof WebGLFloatArray != "undefined" ? WebGLFloatArray : Array );
  
  function IdentityMat44() {
    var m = new glArrayType(16);
    m[0]  = 1; m[1]  = 0; m[2]  = 0; m[3]  = 0;
    m[4]  = 0; m[5]  = 1; m[6]  = 0; m[7]  = 0;
    m[8]  = 0; m[9]  = 0; m[10] = 1; m[11] = 0;
    m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1;
    return m;
  };
  
  function RotateAxis(matA, angRad, axis) {
      var aMap = [ [1, 2], [2, 0], [0, 1] ];
      var a0 = aMap[axis][0], a1 = aMap[axis][1]; 
      var sinAng = Math.sin(angRad), cosAng = Math.cos(angRad);
      var matB = new glArrayType(16);
      for ( var i = 0; i < 16; ++ i ) matB[i] = matA[i];
      for ( var i = 0; i < 3; ++ i ) {
          matB[a0*4+i] = matA[a0*4+i] * cosAng + matA[a1*4+i] * sinAng;
          matB[a1*4+i] = matA[a0*4+i] * -sinAng + matA[a1*4+i] * cosAng;
      }
      return matB;
  }
  
  function Cross( a, b ) { return [ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0], 0.0 ]; }
  function Dot( a, b ) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }
  function Normalize( v ) {
      var len = Math.sqrt( v[0] * v[0] + v[1] * v[1] + v[2] * v[2] );
      return [ v[0] / len, v[1] / len, v[2] / len ];
  }
  
  var Camera = {};
  Camera.create = function() {
      this.pos    = [0, 1.5, 0.0];
      this.target = [0, 0, 0];
      this.up     = [0, 0, 1];
      this.fov_y  = 90;
      this.vp     = [800, 600];
      this.near   = 0.5;
      this.far    = 100.0;
  }
  Camera.Perspective = function() {
      var fn = this.far + this.near;
      var f_n = this.far - this.near;
      var r = this.vp[0] / this.vp[1];
      var t = 1 / Math.tan( Math.PI * this.fov_y / 360 );
      var m = IdentityMat44();
      m[0]  = t/r; m[1]  = 0; m[2]  =  0;                              m[3]  = 0;
      m[4]  = 0;   m[5]  = t; m[6]  =  0;                              m[7]  = 0;
      m[8]  = 0;   m[9]  = 0; m[10] = -fn / f_n;                       m[11] = -1;
      m[12] = 0;   m[13] = 0; m[14] = -2 * this.far * this.near / f_n; m[15] =  0;
      return m;
  }
  Camera.LookAt = function() {
      var mz = Normalize( [ this.pos[0]-this.target[0], this.pos[1]-this.target[1], this.pos[2]-this.target[2] ] );
      var mx = Normalize( Cross( this.up, mz ) );
      var my = Normalize( Cross( mz, mx ) );
      var tx = Dot( mx, this.pos );
      var ty = Dot( my, this.pos );
      var tz = Dot( [-mz[0], -mz[1], -mz[2]], this.pos ); 
      var m = IdentityMat44();
      m[0]  = mx[0]; m[1]  = my[0]; m[2]  = mz[0]; m[3]  = 0;
      m[4]  = mx[1]; m[5]  = my[1]; m[6]  = mz[1]; m[7]  = 0;
      m[8]  = mx[2]; m[9]  = my[2]; m[10] = mz[2]; m[11] = 0;
      m[12] = tx;    m[13] = ty;    m[14] = tz;    m[15] = 1; 
      return m;
  } 
  
  var ShaderProgram = {};
  ShaderProgram.Create = function( shaderList ) {
      var shaderObjs = [];
      for ( var i_sh = 0; i_sh < shaderList.length; ++ i_sh ) {
          var shderObj = this.CompileShader( shaderList[i_sh].source, shaderList[i_sh].stage );
          if ( shderObj == 0 )
              return 0;
          shaderObjs.push( shderObj );
      }
      var prog = {}
      prog.progObj = this.LinkProgram( shaderObjs )
      if ( prog.progObj ) {
          prog.attribIndex = {};
          var noOfAttributes = gl.getProgramParameter( prog.progObj, gl.ACTIVE_ATTRIBUTES );
          for ( var i_n = 0; i_n < noOfAttributes; ++ i_n ) {
              var name = gl.getActiveAttrib( prog.progObj, i_n ).name;
              prog.attribIndex[name] = gl.getAttribLocation( prog.progObj, name );
          }
          prog.unifomLocation = {};
          var noOfUniforms = gl.getProgramParameter( prog.progObj, gl.ACTIVE_UNIFORMS );
          for ( var i_n = 0; i_n < noOfUniforms; ++ i_n ) {
              var name = gl.getActiveUniform( prog.progObj, i_n ).name;
              prog.unifomLocation[name] = gl.getUniformLocation( prog.progObj, name );
          }
      }
      return prog;
  }
  ShaderProgram.AttributeIndex = function( prog, name ) { return prog.attribIndex[name]; } 
  ShaderProgram.UniformLocation = function( prog, name ) { return prog.unifomLocation[name]; } 
  ShaderProgram.Use = function( prog ) { gl.useProgram( prog.progObj ); } 
  ShaderProgram.SetUniformI1  = function( prog, name, val ) { if(prog.unifomLocation[name]) gl.uniform1i( prog.unifomLocation[name], val ); }
  ShaderProgram.SetUniformF1  = function( prog, name, val ) { if(prog.unifomLocation[name]) gl.uniform1f( prog.unifomLocation[name], val ); }
  ShaderProgram.SetUniformF2  = function( prog, name, arr ) { if(prog.unifomLocation[name]) gl.uniform2fv( prog.unifomLocation[name], arr ); }
  ShaderProgram.SetUniformF3  = function( prog, name, arr ) { if(prog.unifomLocation[name]) gl.uniform3fv( prog.unifomLocation[name], arr ); }
  ShaderProgram.SetUniformF4  = function( prog, name, arr ) { if(prog.unifomLocation[name]) gl.uniform4fv( prog.unifomLocation[name], arr ); }
  ShaderProgram.SetUniformM33 = function( prog, name, mat ) { if(prog.unifomLocation[name]) gl.uniformMatrix3fv( prog.unifomLocation[name], false, mat ); }
  ShaderProgram.SetUniformM44 = function( prog, name, mat ) { if(prog.unifomLocation[name]) gl.uniformMatrix4fv( prog.unifomLocation[name], false, mat ); }
  ShaderProgram.CompileShader = function( source, shaderStage ) {
      var shaderScript = document.getElementById(source);
      if (shaderScript)
        source = shaderScript.text;
      var shaderObj = gl.createShader( shaderStage );
      gl.shaderSource( shaderObj, source );
      gl.compileShader( shaderObj );
      var status = gl.getShaderParameter( shaderObj, gl.COMPILE_STATUS );
      if ( !status ) alert(gl.getShaderInfoLog(shaderObj));
      return status ? shaderObj : null;
  } 
  ShaderProgram.LinkProgram = function( shaderObjs ) {
      var prog = gl.createProgram();
      for ( var i_sh = 0; i_sh < shaderObjs.length; ++ i_sh )
          gl.attachShader( prog, shaderObjs[i_sh] );
      gl.linkProgram( prog );
      status = gl.getProgramParameter( prog, gl.LINK_STATUS );
      if ( !status ) alert("Could not initialise shaders");
      gl.useProgram( null );
      return status ? prog : null;
  }
  
  var VertexBuffer = {};
  VertexBuffer.Create = function( attributes, indices ) {
      var buffer = {};
      buffer.buf = [];
      buffer.attr = []
      for ( var i = 0; i < attributes.length; ++ i ) {
          buffer.buf.push( gl.createBuffer() );
          buffer.attr.push( { size : attributes[i].attrSize, loc : attributes[i].attrLoc } );
          gl.bindBuffer( gl.ARRAY_BUFFER, buffer.buf[i] );
          gl.bufferData( gl.ARRAY_BUFFER, new Float32Array( attributes[i].data ), gl.STATIC_DRAW );
      }
      buffer.inx = gl.createBuffer();
      gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, buffer.inx );
      gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, new Uint16Array( indices ), gl.STATIC_DRAW );
      buffer.inxLen = indices.length;
      gl.bindBuffer( gl.ARRAY_BUFFER, null );
      gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null );
      return buffer;
  }
  VertexBuffer.Draw = function( bufObj ) {
    for ( var i = 0; i < bufObj.buf.length; ++ i ) {
          gl.bindBuffer( gl.ARRAY_BUFFER, bufObj.buf[i] );
          gl.vertexAttribPointer( bufObj.attr[i].loc, bufObj.attr[i].size, gl.FLOAT, false, 0, 0 );
          gl.enableVertexAttribArray( bufObj.attr[i].loc );
      }
      gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, bufObj.inx );
      gl.drawElements( gl.TRIANGLES, bufObj.inxLen, gl.UNSIGNED_SHORT, 0 );
      for ( var i = 0; i < bufObj.buf.length; ++ i )
         gl.disableVertexAttribArray( bufObj.attr[i].loc );
      gl.bindBuffer( gl.ARRAY_BUFFER, null );
      gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null );
  }
  
  initScene();
  
  })();
<script id="draw-shader-vs" type="x-shader/x-vertex">
precision highp float;

attribute vec3 inPos;
attribute vec3 inNV;

varying vec4 v_clip_pos;

uniform mat4 u_projectionMat44;
uniform mat4 u_viewMat44;
uniform mat4 u_modelMat44;

void main()
{   
    vec4 pos  = u_viewMat44 * u_modelMat44 * vec4( inPos, 1.0 );

    v_clip_pos  = u_projectionMat44 * pos;
    gl_Position = v_clip_pos;
}
</script>
  
<script id="draw-shader-fs" type="x-shader/x-fragment">
#extension GL_OES_standard_derivatives : enable
precision mediump float;

varying vec4 v_clip_pos;

uniform highp vec3 color;

void main()
{
    vec3  ndc_pos = v_clip_pos.xyz / v_clip_pos.w;
    vec3  dx      = dFdx( ndc_pos );
    vec3  dy      = dFdy( ndc_pos );

    vec3 N = normalize(cross(dx, dy));
    N *= sign(N.z);
    vec3 L = vec3(0.0, 0.0, 1.0); 
    float NdotL = dot(N, L); 

    vec3 diffuse_color = color * NdotL;
    gl_FragColor       = vec4( diffuse_color.rgb, 1.0 );
} 
</script>

<canvas id="canvas" style="border: none;" width="100%" height="100%"></canvas>
© www.soinside.com 2019 - 2024. All rights reserved.