我的目标是从云存储中读取avro文件数据,并使用Java将其写入BigQuery表。如果有人提供代码snipet / ideas来读取avro格式数据并使用Cloud Dataflow将其写入BigQuery表,那将是一件好事。
我看到两种可能的方法:
PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().create();
Pipeline p = Pipeline.create(options);
// Read an AVRO file.
// Alternatively, read the schema from a file.
// https://beam.apache.org/releases/javadoc/2.11.0/index.html?org/apache/beam/sdk/io/AvroIO.html
Schema avroSchema = new Schema.Parser().parse(
"{\"type\": \"record\", "
+ "\"name\": \"quote\", "
+ "\"fields\": ["
+ "{\"name\": \"source\", \"type\": \"string\"},"
+ "{\"name\": \"quote\", \"type\": \"string\"}"
+ "]}");
PCollection<GenericRecord> avroRecords = p.apply(
AvroIO.readGenericRecords(avroSchema).from("gs://bucket/quotes.avro"));
// Convert Avro GenericRecords to BigQuery TableRows.
// It's probably better to use Avro-generated classes instead of manually casting types.
// https://beam.apache.org/documentation/io/built-in/google-bigquery/#writing-to-bigquery
PCollection<TableRow> bigQueryRows = avroRecords.apply(
MapElements.into(TypeDescriptor.of(TableRow.class))
.via(
(GenericRecord elem) ->
new TableRow()
.set("source", ((Utf8) elem.get("source")).toString())
.set("quote", ((Utf8) elem.get("quote")).toString())));
// https://cloud.google.com/bigquery/docs/schemas
TableSchema bigQuerySchema =
new TableSchema()
.setFields(
ImmutableList.of(
new TableFieldSchema()
.setName("source")
.setType("STRING"),
new TableFieldSchema()
.setName("quote")
.setType("STRING")));
bigQueryRows.apply(BigQueryIO.writeTableRows()
.to(new TableReference()
.setProjectId("project_id")
.setDatasetId("dataset_id")
.setTableId("avro_source"))
.withSchema(bigQuerySchema)
.withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
.withWriteDisposition(WriteDisposition.WRITE_TRUNCATE));
p.run().waitUntilFinish();
为此,您可以尝试使用以下Python脚本:
import apache_beam as beam
import sys
PROJECT='YOUR_PROJECT'
BUCKET='YOUR_BUCKET'
def run():
argv = [
'--project={0}'.format(PROJECT),
'--staging_location=gs://{0}/staging/'.format(BUCKET),
'--temp_location=gs://{0}/staging/'.format(BUCKET),
'--runner=DataflowRunner'
]
p = beam.Pipeline(argv=argv)
(p
| 'ReadAvroFromGCS' >> beam.io.avroio.ReadFromAvro('gs://{0}/file.avro'.format(BUCKET))
| 'WriteToBigQuery' >> beam.io.WriteToBigQuery('{0}:dataset.avrotable'.format(PROJECT))
)
p.run()
if __name__ == '__main__':
run()
希望能帮助到你。