我正在使用 matplotlib 基于数据框制作步骤图,但我希望出现数据框的键/值之一(
signals_df['Gage']
),而不是坐标作为注释,但我总是收到错误:AttributeError: 'Line2D' object has no attribute 'get_offsets'
当我单击从下到上的第一个子图时,注释没有出现。事实上,我注释掉了 annot.set_visible(False)
,并将示例中的 ""
替换为 val_gage
,这样当单击子图中的某个点时,它看起来就像我希望注释一一出现。
这是有问题的代码:
import pandas as pd
import numpy as np
import matplotlib as mtpl
from matplotlib import pyplot as plt
import matplotlib.ticker as ticker
annot = mtpl.text.Annotation
data = {
# 'Name': ['Status', 'Status', 'HMI', 'Allst', 'Drvr', 'CurrTUBand', 'RUSource', 'RUReqstrPriority', 'RUReqstrSystem', 'RUResReqstStat', 'CurrTUBand', 'DSP', 'SetDSP', 'SetDSP', 'DSP', 'RUSource', 'RUReqstrPriority', 'RUReqstrSystem', 'RUResReqstStat', 'Status', 'Delay', 'Status', 'Delay', 'HMI', 'Status', 'Status', 'HMI', 'DSP'],
# 'Value': [4, 4, 2, 1, 1, 1, 0, 7, 0, 4, 1, 1, 3, 0, 3, 0, 7, 0, 4, 1, 0, 1, 0, 1, 4, 4, 2, 3],
# 'Gage': ['H1', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H1', 'H1', 'H3', 'H3', 'H3', 'H1', 'H3', 'H3', 'H3'],
# 'Id_Par': [0, 0, 0, 0, 0, 0, 10, 10, 10, 10, 10, 0, 0, 22, 22, 28, 28, 28, 28, 0, 0, 38, 38, 0, 0, 0, 0, 0]
'Name': ['Lamp_D_Rq', 'Status', 'Status', 'HMI', 'Lck_D_RqDrv3', 'Lck_D_RqDrv3', 'Lck_D_RqDrv3', 'Lck_D_RqDrv3', 'Lamp_D_Rq', 'Lamp_D_Rq', 'Lamp_D_Rq', 'Lamp_D_Rq'],
'Value': [0, 4, 4, 2, 1, 1, 2, 2, 1, 1, 3, 3],
'Gage': ['F1', 'H1', 'H3', 'H3', 'H3', 'F1', 'H3', 'F1', 'F1', 'H3', 'F1', 'H3'],
'Id_Par': [0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0]
}
signals_df = pd.DataFrame(data)
def plot_signals(signals_df):
print(signals_df)
# Count signals by parallel
signals_df['Count'] = signals_df.groupby('Id_Par').cumcount().add(1).mask(signals_df['Id_Par'].eq(0), 0)
# Subtract Parallel values from the index column
signals_df['Sub'] = signals_df.index - signals_df['Count']
id_par_prev = signals_df['Id_Par'].unique()
id_par = np.delete(id_par_prev, 0)
signals_df['Prev'] = [1 if x in id_par else 0 for x in signals_df['Id_Par']]
signals_df['Final'] = signals_df['Prev'] + signals_df['Sub']
# Convert and set Subtract to index
signals_df.set_index('Final', inplace=True)
# Get individual names and variables for the chart
names_list = [name for name in signals_df['Name'].unique()]
num_names_list = len(names_list)
num_axisx = len(signals_df["Name"])
# Matplotlib's categorical feature to convert x-axis values to string
x_values = [-1, ]
x_values += (list(set(signals_df.index)))
x_values = [str(i) for i in sorted(x_values)]
# Creation Graphics
fig, ax = plt.subplots(nrows=num_names_list, figsize=(10, 10), sharex=True)
plt.xticks(np.arange(0, num_axisx), color='SteelBlue', fontweight='bold')
# Loop to build the different graphs
for pos, name in enumerate(names_list):
# Creating a dummy plot and then remove it
dummy, = ax[pos].plot(x_values, np.zeros_like(x_values))
dummy.remove()
# Get names by values and gage data
data = signals_df[signals_df["Name"] == name]["Value"]
data_gage = signals_df[signals_df["Name"] == name]["Gage"]
# Get values axis-x and axis-y
x_ = np.hstack([-1, data.index.values, len(signals_df) - 1])
y_ = np.hstack([0, data.values, data.iloc[-1]])
y_gage = np.hstack(["", "-", data_gage.values])
# print(y_gage)
# Plotting the data by position
steps = ax[pos].plot(x_.astype('str'), y_, drawstyle='steps-post', marker='*', markersize=8, color='k', linewidth=2)
ax[pos].set_ylabel(name, fontsize=8, fontweight='bold', color='SteelBlue', rotation=30, labelpad=35)
ax[pos].yaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f'))
ax[pos].yaxis.set_tick_params(labelsize=6)
ax[pos].grid(alpha=0.4, color='SteelBlue')
# Labeling the markers with Values and Gage
xy_temp = []
for i in range(len(y_)):
if i == 0:
xy = [x_[0].astype('str'), y_[0]]
xy_temp.append(xy)
else:
xy = [x_[i - 1].astype('str'), y_[i - 1]]
xy_temp.append(xy)
# Creating values in text inside the plot
ax[pos].text(x=xy[0], y=xy[1], s=str(xy[1]), color='k', fontweight='bold', fontsize=12)
for val_gage, xy in zip(y_gage, xy_temp):
annot = ax[pos].annotate(val_gage, xy=xy, xytext=(-20, 20), textcoords="offset points",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))
# annot.set_visible(False)
# Function for storing and showing the clicked values
def update_annot(ind):
print("Enter update_annot")
coord = steps[0].get_offsets()[ind["ind"][0]]
annot.xy = coord
text = "{}, {}".format(" ".join(list(map(str, ind["ind"]))),
" ".join([y_gage[n] for n in ind["ind"]]))
annot.set_text(text)
annot.get_bbox_patch().set_alpha(0.4)
def on_click(event):
print("Enter on_click")
vis = annot.get_visible()
# print(event.inaxes)
# print(ax[pos])
# print(event.inaxes == ax[pos])
if event.inaxes == ax[pos]:
cont, ind = steps[0].contains(event)
if cont:
update_annot(ind)
annot.set_visible(True)
fig.canvas.draw_idle()
else:
if vis:
annot.set_visible(False)
fig.canvas.draw_idle()
fig.canvas.mpl_connect("button_press_event",on_click)
plt.show()
plot_signals(signals_df)
我已经测试并审查了许多答案和代码,如下所示:
我什至审查了 mplcursors 模块很长时间,因为它附带了一个示例,其中的步骤图与我正在做的类似:https://mplcursors.readthedocs.io/en/stable/examples/step。 html,但它给了我相同的结果,但我找不到解决方案。
更不用说大量其他很棒的、易于使用的、广泛兼容的 JS 交互式绘图功能,全部免费,全部使用 Python。只需使用 conda(或 pip)安装,无需在线帐户,最新版本中的绘图默认为“离线模式”。
所以用plotly,具体的plotly表达,就很简单了!
对于您的轴/数据的具体细节,我并不是 100% 您想要的,但我认为下面演示了 Plotly 可用于创建交互式图表的巨大轻松,以及可用的非常强大的自定义功能。
plotly
文档,您将能够轻松地将这些交互式图表调整为您想要的目的。
通过
,您仍然可以访问与所有其他子模块相关的内置plotly.express
功能。因此,不要忽视这些[例如,上面的文档链接显示了特定于 subplotting、自定义注释/悬停注释、自定义样式格式 等的部分,所有这些仍然适用于Fig
中的对象!])。plotly.express
与您的相同...Plotly 设计是为了与
合作,特别是*。pandas.DataFrames
例如,
import plotly.express as px
import plotly.graph_objs as go
import pandas as pd
import numpy as np
data = {
"Name": [
"Lamp_D_Rq", "Status", "Status", "HMI",
"Lck_D_RqDrv3", "Lck_D_RqDrv3", "Lck_D_RqDrv3",
"Lck_D_RqDrv3", "Lamp_D_Rq", "Lamp_D_Rq",
"Lamp_D_Rq", "Lamp_D_Rq",
],
"Value": [0, 4, 4, 2, 1, 1, 2, 2, 1, 1, 3, 3],
"Gage": [
"F1", "H1", "H3", "H3", "H3",
"F1", "H3", "F1", "F1", "H3",
"F1", "H3",
],
"Id_Par": [0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0],
}
signals_df = pd.DataFrame(data)
注意: 然后我通过绘图函数运行
signals_df
,并添加 return signals_df
来获取更新后的 df,即:
决赛 | 姓名 | 价值 | 量规 | Id_Par | 数 | 子 | 上一页 |
---|---|---|---|---|---|---|---|
0 | 灯_D_Rq | 0 | F1 | 0 | 0 | 0 | 0 |
1 | 状态 | 4 | H1 | 0 | 0 | 1 | 0 |
2 | 状态 | 4 | H3 | 0 | 0 | 2 | 0 |
3 | 人机界面 | 2 | H3 | 11 | 1 | 2 | 1 |
4 | Lck_D_RqDrv3 | 1 | H3 | 0 | 0 | 4 | 0 |
5 | Lck_D_RqDrv3 | 1 | F1 | 0 | 0 | 5 | 0 |
6 | Lck_D_RqDrv3 | 2 | H3 | 0 | 0 | 6 | 0 |
7 | Lck_D_RqDrv3 | 2 | F1 | 0 | 0 | 7 | 0 |
8 | 灯_D_Rq | 1 | F1 | 0 | 0 | 8 | 0 |
9 | 灯_D_Rq | 1 | H3 | 0 | 0 | 9 | 0 |
10 | 灯_D_Rq | 3 | F1 | 0 | 0 | 10 | 0 |
11 | 灯_D_Rq | 3 | H3 | 0 | 0 | 11 | 0 |
plotly.express
(px)这是一种相对(即
)非常简单、可能的多功能、现代交互式数据显示,使用 Plotly(通过mpl
):px
fig = px.line(
signals_df,
y="Value",
x="Sub",
color="Name",
hover_data=["Gage"],
custom_data=["Gage"],
markers=True,
height=500,
render_mode="svg")
fig.update_traces(line={"shape": 'hv'})
fig.update_traces(
hovertemplate="<br>".join([
"Gage: %{customdata[0]}",
])
)
fig.show(config={'displaylogo': False})
在不了解您正在使用的库的情况下,我可以看到您正在创建这些注释对象,然后将它们分配给稍后重新分配的全局变量,因此您丢失了正确的对象以使其可见。
相反,您可以将注释对象保存到字典中,并在以后根据对象需要它们时尝试检索它们。
我用一个列表来向你展示这个想法,但我想你需要一本字典来识别正确的对象。
我稍微修改了你的代码,如果你调整窗口大小,它会显示所需的行为......我想你也必须找到一种刷新绘图的方法:
import pandas as pd
import numpy as np
import matplotlib as mtpl
from matplotlib import pyplot as plt
import matplotlib.ticker as ticker
annotations = []
data = {
# 'Name': ['Status', 'Status', 'HMI', 'Allst', 'Drvr', 'CurrTUBand', 'RUSource', 'RUReqstrPriority', 'RUReqstrSystem', 'RUResReqstStat', 'CurrTUBand', 'DSP', 'SetDSP', 'SetDSP', 'DSP', 'RUSource', 'RUReqstrPriority', 'RUReqstrSystem', 'RUResReqstStat', 'Status', 'Delay', 'Status', 'Delay', 'HMI', 'Status', 'Status', 'HMI', 'DSP'],
# 'Value': [4, 4, 2, 1, 1, 1, 0, 7, 0, 4, 1, 1, 3, 0, 3, 0, 7, 0, 4, 1, 0, 1, 0, 1, 4, 4, 2, 3],
# 'Gage': ['H1', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H3', 'H1', 'H1', 'H3', 'H3', 'H3', 'H1', 'H3', 'H3', 'H3'],
# 'Id_Par': [0, 0, 0, 0, 0, 0, 10, 10, 10, 10, 10, 0, 0, 22, 22, 28, 28, 28, 28, 0, 0, 38, 38, 0, 0, 0, 0, 0]
'Name': ['Lamp_D_Rq', 'Status', 'Status', 'HMI', 'Lck_D_RqDrv3', 'Lck_D_RqDrv3', 'Lck_D_RqDrv3', 'Lck_D_RqDrv3', 'Lamp_D_Rq', 'Lamp_D_Rq', 'Lamp_D_Rq', 'Lamp_D_Rq'],
'Value': [0, 4, 4, 2, 1, 1, 2, 2, 1, 1, 3, 3],
'Gage': ['F1', 'H1', 'H3', 'H3', 'H3', 'F1', 'H3', 'F1', 'F1', 'H3', 'F1', 'H3'],
'Id_Par': [0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0]
}
signals_df = pd.DataFrame(data)
def plot_signals(signals_df):
print(signals_df)
# Count signals by parallel
signals_df['Count'] = signals_df.groupby('Id_Par').cumcount().add(1).mask(signals_df['Id_Par'].eq(0), 0)
# Subtract Parallel values from the index column
signals_df['Sub'] = signals_df.index - signals_df['Count']
id_par_prev = signals_df['Id_Par'].unique()
id_par = np.delete(id_par_prev, 0)
signals_df['Prev'] = [1 if x in id_par else 0 for x in signals_df['Id_Par']]
signals_df['Final'] = signals_df['Prev'] + signals_df['Sub']
# Convert and set Subtract to index
signals_df.set_index('Final', inplace=True)
# Get individual names and variables for the chart
names_list = [name for name in signals_df['Name'].unique()]
num_names_list = len(names_list)
num_axisx = len(signals_df["Name"])
# Matplotlib's categorical feature to convert x-axis values to string
x_values = [-1, ]
x_values += (list(set(signals_df.index)))
x_values = [str(i) for i in sorted(x_values)]
# Creation Graphics
fig, ax = plt.subplots(nrows=num_names_list, figsize=(10, 10), sharex=True)
plt.xticks(np.arange(0, num_axisx), color='SteelBlue', fontweight='bold')
# Loop to build the different graphs
for pos, name in enumerate(names_list):
print("name: %s" % name)
print("pos: %s" % pos)
# Creating a dummy plot and then remove it
dummy, = ax[pos].plot(x_values, np.zeros_like(x_values))
dummy.remove()
# Get names by values and gage data
data = signals_df[signals_df["Name"] == name]["Value"]
data_gage = signals_df[signals_df["Name"] == name]["Gage"]
# Get values axis-x and axis-y
x_ = np.hstack([-1, data.index.values, len(signals_df) - 1])
y_ = np.hstack([0, data.values, data.iloc[-1]])
y_gage = np.hstack(["", "-", data_gage.values])
# print(y_gage)
# Plotting the data by position
steps = ax[pos].plot(x_.astype('str'), y_, drawstyle='steps-post', marker='*', markersize=8, color='k', linewidth=2)
ax[pos].set_ylabel(name, fontsize=8, fontweight='bold', color='SteelBlue', rotation=30, labelpad=35)
ax[pos].yaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f'))
ax[pos].yaxis.set_tick_params(labelsize=6)
ax[pos].grid(alpha=0.4, color='SteelBlue')
# Labeling the markers with Values and Gage
xy_temp = []
for i in range(len(y_)):
if i == 0:
xy = [x_[0].astype('str'), y_[0]]
xy_temp.append(xy)
else:
xy = [x_[i - 1].astype('str'), y_[i - 1]]
xy_temp.append(xy)
# Creating values in text inside the plot
ax[pos].text(x=xy[0], y=xy[1], s=str(xy[1]), color='k', fontweight='bold', fontsize=12)
for val_gage, xy in zip(y_gage, xy_temp):
print("val_gage: %s" % val_gage)
annot = ax[pos].annotate(val_gage, xy=xy, xytext=(-20, 20), textcoords="offset points",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))
annot.set_visible(False)
annotations.append(annot)
# Function for storing and showing the clicked values
def update_annot(ind):
print("Enter update_annot")
coord = steps[0].get_offsets()[ind["ind"][0]]
annot.xy = coord
text = "{}, {}".format(" ".join(list(map(str, ind["ind"]))),
" ".join([y_gage[n] for n in ind["ind"]]))
annot.set_text(text)
annot.get_bbox_patch().set_alpha(0.4)
def on_click(event):
print("Enter on_click")
vis = annot.get_visible()
# make the first three annotations visible
for i in range(0, 3):
print('elem visible')
annotations[i].set_visible(True)
print(event.inaxes)
print(ax[pos])
print(event.inaxes == ax[pos])
if event.inaxes == ax[pos]:
cont, ind = steps[0].contains(event)
print (ind)
if cont:
update_annot(ind)
annot.set_visible(True)
fig.canvas.draw_idle()
else:
if vis:
annot.set_visible(False)
fig.canvas.draw_idle()
fig.canvas.mpl_connect("button_press_event",on_click)
plt.show()
plot_signals(signals_df)
我希望这会有所帮助并解决您的问题。如果我猜对了,它看起来更像是一个 python/编程问题,并且与您正在使用的库没有太大关系:)