混合物之前不在JAGS中工作,仅在包括可能性项时

问题描述 投票:3回答:1

底部的代码将复制问题,只需将其复制并粘贴到R中。

我想要的是平均值和精度在30%的时间内为(-100,100),在70%的时间内为(200,1000)。把它想象成a,b和p中的排列。

所以'pick'应该是1 30%的时间,2 70%的时间。

实际发生的是,在每次迭代时,pick为2(如果p的第一个元素是较大的那个,则为1)。你可以在摘要中看到这一点,其中'pick','testa'和'testb'的分位数在整个过程中保持不变。最奇怪的是,如果你删除似然循环,那么pick会完全按照预期工作。

如果不让我知道,我希望这能解释这个问题。这是我第一次发帖,所以我一定会搞砸了。

library(rjags)
n = 10
y <- rnorm(n, 5, 10)
a = c(-100, 200)
b = c(100, 1000)
p = c(0.3, 0.7)

## Model

mod_str = "model{
    # Likelihood
    for (i in 1:n){
            y[i] ~ dnorm(mu, 10)
    }

    # ISSUE HERE: MIXTURE PRIOR
    mu ~ dnorm(a[pick], b[pick])
    pick ~ dcat(p[1:2])

    testa = a[pick]
    testb = b[pick]
}"

model = jags.model(textConnection(mod_str), data = list(y = y, n=n, a=a, b=b, p=p), n.chains=1)
update(model, 10000)
res = coda.samples(model, variable.names = c('pick', 'testa', 'testb', 'mu'), n.iter = 10000)
summary(res)
bayesian jags rjags
1个回答
1
投票

我认为你出于几个原因遇到了问题。首先,您提供给模型的数据(即y)不是正态分布的混合。因此,模型本身无需混合。我会生成这样的数据:

set.seed(320)

# number of samples
n <- 10

# Because it is a mixture of 2 we can just use an indicator variable.
#  here, pick (in the long run), would be '1' 30% of the time.
pick <- rbinom(n, 1, p[1])

# generate the data. b is in terms of precision so we are converting this
#  to standard deviations (which is what R wants).
y_det <- pick * rnorm(n, a[1], sqrt(1/b[1])) + (1 - pick) * rnorm(n, a[2], sqrt(1/b[2]))

# add a small amount of noise, can change to be more as necessary.
y <- rnorm(n, y_det, 1)

这些数据看起来更像是您希望提供给混合模型的数据。

enter image description here

在此之后,我将以与数据生成过程类似的方式对模型进行编码。我想要一些指标变量在两个正态分布之间跳转。因此,mu可能会改变y中的每个标量。

mod_str = "model{
    # Likelihood
    for (i in 1:n){
            y[i] ~ dnorm(mu[i], 10)
            mu[i] <- mu_ind[i] * a_mu + (1 - mu_ind[i]) * b_mu
            mu_ind[i] ~ dbern(p[1])

    }
    a_mu ~ dnorm(a[1], b[1])
    b_mu ~ dnorm(a[2], b[2])

}"

model = jags.model(textConnection(mod_str), data = list(y = y, n=n, a=a, b=b, p=p), n.chains=1)
update(model, 10000)
res = coda.samples(model, variable.names = c('mu_ind', 'a_mu', 'b_mu'), n.iter = 10000)
summary(res)

             2.5%    25%    50%    75% 97.5%
a_mu       -100.4 -100.3 -100.2 -100.1  -100
b_mu        199.9  200.0  200.0  200.0   200
mu_ind[1]     0.0    0.0    0.0    0.0     0
mu_ind[2]     1.0    1.0    1.0    1.0     1
mu_ind[3]     0.0    0.0    0.0    0.0     0
mu_ind[4]     1.0    1.0    1.0    1.0     1
mu_ind[5]     0.0    0.0    0.0    0.0     0
mu_ind[6]     0.0    0.0    0.0    0.0     0
mu_ind[7]     1.0    1.0    1.0    1.0     1
mu_ind[8]     0.0    0.0    0.0    0.0     0
mu_ind[9]     0.0    0.0    0.0    0.0     0
mu_ind[10]    1.0    1.0    1.0    1.0     1

如果您提供了更多数据,那么(从长远来看)您将指示变量mu_ind取值为1 30%的时间。如果你有超过2个发行版,你可以改为使用dcat。因此,另一种更普遍的做法是(and I am borrowing heavily from this post by John Kruschke):

mod_str = "model {
  # Likelihood:
  for( i in 1 : n ) {
    y[i] ~ dnorm( mu[i] , 10 ) 
    mu[i] <- muOfpick[ pick[i] ]
    pick[i] ~ dcat( p[1:2] )
  }
  # Prior:
  for ( i in 1:2 ) {
    muOfpick[i] ~ dnorm( a[i] , b[i] )
  }
}"
model = jags.model(textConnection(mod_str), data = list(y = y, n=n, a=a, b=b, p=p), n.chains=1)
update(model, 10000)
res = coda.samples(model, variable.names = c('pick', 'muOfpick'), n.iter = 10000)
summary(res)

              2.5%    25%    50%    75% 97.5%
muOfpick[1] -100.4 -100.3 -100.2 -100.1  -100
muOfpick[2]  199.9  200.0  200.0  200.0   200
pick[1]        2.0    2.0    2.0    2.0     2
pick[2]        1.0    1.0    1.0    1.0     1
pick[3]        2.0    2.0    2.0    2.0     2
pick[4]        1.0    1.0    1.0    1.0     1
pick[5]        2.0    2.0    2.0    2.0     2
pick[6]        2.0    2.0    2.0    2.0     2
pick[7]        1.0    1.0    1.0    1.0     1
pick[8]        2.0    2.0    2.0    2.0     2
pick[9]        2.0    2.0    2.0    2.0     2
pick[10]       1.0    1.0    1.0    1.0     1

上面的链接包括更多的先验(例如,Dirichlet之前的概率被纳入分类分布)。

© www.soinside.com 2019 - 2024. All rights reserved.