我有factor
类型的变量有三个级别:Fatal injury
,Non-fatal injury
和P.D. only
:
head(OttawaCollisions$Collision_Classification)
[1] P.D. only Non-fatal injury P.D. only P.D. only P.D. only P.D. only
Levels: Fatal injury Non-fatal injury P.D. only
如何将“致命伤”和“非致命伤”合并到一个单一级别,以便将伤亡加重?
更好的是,我甚至能以某种方式消除死亡事故吗?在这种情况下,我需要从数据框中删除致命的每个实例,而不仅仅是编码NA或其他东西。
数据:
x <- factor( rep( c('P.D. only', 'Non-fatal injury' , 'fatal injury'), 2) )
x
# [1] P.D. only Non-fatal injury fatal injury P.D. only
# [5] Non-fatal injury fatal injury
# Levels: fatal injury Non-fatal injury P.D. only
代码:您可以使用labels
参数重命名级别。忽略重复级别的警告。在这里Non-fatal injury
和fatal injury
与Fatalities
结合在一起。最后,使用droplevels()
函数删除重复的级别。
x <- factor( x = x,
levels = c('P.D. only', 'Non-fatal injury' , 'fatal injury'),
labels = c('P.D. only', 'Fatalities', 'Fatalities'))
# [1] P.D. only Fatalities Fatalities P.D. only Fatalities Fatalities
# Levels: P.D. only Fatalities Fatalities
droplevels(x)
# [1] P.D. only Fatalities Fatalities P.D. only Fatalities Fatalities
# Levels: P.D. only Fatalities
编辑:根据您的数据框名称组合代码
OttawaCollisions$CollisionClass <- factor( x = OttawaCollisions$CollisionClass,
levels = c('P.D. only', 'Non-fatal injury' , 'fatal injury'),
labels = c('P.D. only', 'Fatalities', 'Fatalities'))
OttawaCollisions$CollisionClass <- droplevels(OttawaCollisions$CollisionClass)
EDIT2:data.table解决方案。
library('data.table')
setDT(OttawaCollisions)
OttawaCollisions[ i = CollisionClass %in% c( "fatal injury", "Non-fatal injury"),
j = CollisionClass := "Fatalities"]
OttawaCollisions[, CollisionClass := droplevels(CollisionClass) ]
EDIT3:另一个基础R解决方案。我更喜欢这个基本的R解决方案,而不是第一个(在labels
中使用factor()
),因为当数据中有更多级别时,它会让生活更轻松。
OttawaCollisions$CollisionClass <- as.character(OttawaCollisions$CollisionClass)
OttawaCollisions$CollisionClass <- factor( with(OttawaCollisions,
replace( CollisionClass,
CollisionClass %in% c( "fatal injury", "Non-fatal injury"),
"Fatalities") ) )
您还可以直接重新分配级别:
> test_df <- tibble(x=as.factor(c('Fatal','Non-fatal','PD','Fatal','Non-fatal','PD')), y=1:6)
> test_df
# A tibble: 6 x 2
x y
<fct> <int>
1 Fatal 1
2 Non-fatal 2
3 PD 3
4 Fatal 4
5 Non-fatal 5
6 PD 6
> levels(test_df$x)
[1] "Fatal" "Non-fatal" "PD"
现在您已了解订单,请替换要组合的级别名称:
> levels(test_df$x) <- c("Fatal","Other","Other")
> test_df
# A tibble: 6 x 2
x y
<fct> <int>
1 Fatal 1
2 Other 2
3 Other 3
4 Fatal 4
5 Other 5
6 Other 6
然后你可以做额外的处理,例如:
> library(dplyr)
> test_df %>% group_by(x) %>% summarize(n)
# A tibble: 2 x 2
x n
<fct> <dbl>
1 Fatal 45.0
2 Other 45.0