对于一篇论文,我想包含一张交互效果图。我不确定是否以及如何改进它以使我的交互效果更加明显。这是 R 代码:
plot_model4 <- plot_model(model4, type = "int",
terms = c("log_EU_immigration_cumulative_4yr", "lknemny"),
ci.lvl = 0.95) + labs(
title = "Predicted Welfare State Support Based on Exposure to EU Immigration and Individual Financial Insecurity",
x = "Cumulative EU Immigration (Log, Last 4 Years)",
y = "Predicted Support for Welfare State",
color = "Financial Insecurity Likelihood: How likely not enough money for household necessities next 12 months") + scale_color_manual(
values = c("#984464", "#BFA5A3", "#449777", "#A4D8A0"),
labels = c("Not at all likely", "Not very likely", "Likely", "Very likely")) + theme_minimal() + theme(legend.position = "right") + scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) + scale_y_continuous(breaks = scales::pretty_breaks(n = 10))
不幸的是,我不知道如何用
plot_model()
实现这一点。但这里有一个替代库的示例:marginaleffects
。也许这对您或其他读者有用。
marginaleffects
网站包含大量详细教程。这些在这种情况下可能特别有用:
在下面的第一张图中,我们显示了所有类别。在第二张图中,我们使用
list()
来指定要显示的 carb
主持人的哪些值:
library(marginaleffects)
mod <- lm(mpg ~ wt * factor(carb), data = mtcars)
plot_predictions(mod, condition = c("wt", "carb"))
plot_predictions(mod, condition = list("wt", "carb" = c(1, 8)))