我正在为特定数据集创建线性回归模型,我正在遵循我在youtube上找到的一个示例,在某些时候我计算峰度和偏度如下:
# calculate the excess kurtosis using the fisher method. The alternative is Pearson which
calculates regular kurtosis.
exxon_kurtosis = kurtosis(price_data['exxon_price'], fisher = True)
oil_kurtosis = kurtosis(price_data['oil_price'], fisher = True)
# calculate the skewness
exxon_skew = skew(price_data['exxon_price'])
oil_skew = skew(price_data['oil_price'])
display("Exxon Excess Kurtosis: {:.2}".format(exxon_kurtosis)) # this looks fine
display("Oil Excess Kurtosis: {:.2}".format(oil_kurtosis)) # this looks fine
display("Exxon Skew: {:.2}".format(exxon_skew)) # moderately skewed
display("Oil Skew: {:.2}".format(oil_skew)) # moderately skewed, it's a
little high but we will accept it.
我是Python新手,下面的代码让我很困惑{:.2},请有人解释一下这部分是什么{:.2}
display("Exxon Excess Kurtosis: {:.2}".format(exxon_kurtosis))
kurtosis
和 skew
函数正在执行计算,而 display
函数可能只是针对该环境的 print()
的某种形式!
".. {:.2}".format(x)
是一个字符串格式化程序,它将浮点四舍五入为 2 位有效数字
>>> "{:.2}".format(3.0)
'3.0'
>>> "{:.2}".format(0.1555)
'0.16'
>>> "{:.2}".format(3.1555)
'3.2'
字符串格式详尽无遗详细信息请参阅