如何使用opencv拼接多张图像?

问题描述 投票:0回答:2

我想使用多个图像创建全景图。所以基本上,相机将在平面上线性平移,并且将连续拍摄大约 20-30 张图像。我必须创建这些图像的全景图。我尝试过使用缝合功能以及查找特征并匹配它们然后变形的传统方法。但我不确定我做得是否正确。我该如何继续?

import imutils
import cv2
import glob

input_path = "/Users/akshayacharya/Desktop/Panorama/Raw 
Data/riverside/*.jpg"

# input and sort the images
list_images = glob.glob(input_path)
list_sorted = sorted(list_images)
print(list_sorted)

# output path definition
output_path = "/Users/akshayacharya/Desktop/Panorama/Final 
Panorama/finalpanoex1.jpg"

# initialize empty list and fill all images
images = []
for image in list_sorted:
    image1 = cv2.imread(image)
    image1 = cv2.resize(image1, (720, 480))
    images.append(image1)

print("Read the images")
# this is the final list to stitch
final = [images[0]]
flag = True
print(len(images))
temp = [images[0]]
print(type(temp))

stitcher = cv2.createStitcher() if imutils.is_cv3() else 
cv2.Stitcher_create()

i = 0
while(i < len(images)-1):
    (status, stitched) = stitcher.stitch([temp[0], images[i+1]])
    if status == 0:
        final.append(images[i+1])
        print(f"Succesfully stitch {i} to {i+1}")
        i = i+1

        temp[0] = stitched

        continue
    if status != 0:
        print(f"Succesfully could not stitch {i} to {i + 1}")
        for j in range(i+2, len(images)):
            print(f"now trying {i} to {j}")
            (status, stitchedd) = stitcher.stitch([temp[0], images[j]])
            if status == 0:
                print(f"Succesfully managed to stitch {i} to {j}")
                final.append(images[j])
                i=j
                temp[0] = stitchedd
                break
            if status != 0:
                print(f"Oops could not stitch {i} to {j}")
                print(f"Will now see compatibility between {i} and {j+1}")

            continue

        i += 1
    continue

cv2.imwrite(output_path, temp[0])

输出图像: I have attached the output image

python opencv sift image-stitching panoramas
2个回答
1
投票

全景图像构建管道可以是关键点检测和局部不变描述符;关键点匹配;兰萨克;和透视扭曲。

使用 RANSAC 算法使用匹配的特征向量来估计单应矩阵。使用从 RANSAC 获得的单应性矩阵应用扭曲变换。 RANSAC 改进了匹配过程检测。 最近的教程可在OpenCV 文档此处获取。


1
投票

您可以查看我的 SIFT 笔记本,了解有关使用 opencv 进行功能和全景拼接的代码此处

© www.soinside.com 2019 - 2024. All rights reserved.