我比较与其他12所列出的大学之一名单,发现模糊字符串匹配和写所有的结果为csv。我没有做模糊字符串匹配到一个大名单,因为我需要知道比赛来自哪一个列表。列表的例子:
data = [[1-00000, "MIT"], [1-00001, "Stanford"] ,...]
Data1 = ['MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT)'], ['STANFORD UNIVERSITY'],...
堆栈溢出的帮助,我得到尽可能:
for uni in data:
hit = process.extractOne(str(uni[1]), data10, scorer = fuzz.token_set_ratio, score_cutoff = 90)
try:
if float(hit[1]) >= 94:
with open(filename, mode='a', newline="") as csv_file:
fieldnames = ['bwbnr', 'uni_name', 'match', 'points']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames, delimiter=';')
writer.writerow({'bwbnr': str(uni[0]), 'uni_name': str(uni[1]), 'match': str(hit), 'points': 10})
except:
hit1 = process.extractOne(str(uni[1]), data11, scorer = fuzz.token_set_ratio, score_cutoff = 90)
try:
if float(hit1[1]) >= 94:
with open(filename, mode='a', newline="") as csv_file:
fieldnames = ['bwbnr', 'uni_name', 'match', 'points']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames, delimiter=';')
writer.writerow({'bwbnr': str(uni[0]), 'uni_name': str(uni[1]), 'match': str(hit), 'points': 5})
下乡的12名名单,直到最后的节选,我包括那些与“未找到”得分比94低,结束:
except:
hit12 = process.extractOne(str(uni[1]), data9, scorer = fuzz.token_set_ratio)
try:
if float(hit12[1]) < 94:
with open(filename, mode='a', newline="") as csv_file:
fieldnames = ['bwbnr', 'uni_name', 'match', 'points']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames, delimiter=';')
writer.writerow({'bwbnr': str(uni[0]), 'uni_name': str(uni[1]), 'match': str(hit), 'points': 3})
except:
with open(filename, mode='a', newline="") as csv_file:
fieldnames = ['bwbnr', 'uni_name', 'match', 'points']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames, delimiter=';')
writer.writerow({'bwbnr': str(uni[0]), 'uni_name': str(uni[1]), 'match': str(hit), 'points': 3})
不过,我只返回2854结果在我原来的名单反对3175(这都需要进行检查,并写入新CSV)。
当我把我所有的名单一起,做我的extractOne我得到3175分的结果:
scored_testdata = []
for uni in data:
hit = process.extractOne(str(uni[1]), big_list, scorer = fuzzy.token_set_ratio, score_cutoff = 90)
scored_testdata.append(hit)
print(len(scored_testdata))
我缺少的是在这里吗?给我的感觉导致process.extractOne
返回“无”被丢弃的某些原因。任何帮助将非常感激。
完整的代码可以发现here。
最后的尝试,除了应该是一个检查所有的清单和不score_cutoff做一个extractBest:
except:
hit12 = process.extractOne(str(uni[1]), big_list, scorer = fuzz.token_set_ratio)
with open(filename, mode='a', newline="") as csv_file:
fieldnames = ['bwbnr', 'uni_name', 'match', 'confidence', 'points']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames, delimiter=';')
writer.writerow({'bwbnr': str(uni[0]), 'uni_name': str(uni[1]), 'match': "CHECK AGAIN " + str(hit12[0]), 'confidence': str(hit12[1]), 'points': 3})