当我尝试使用 tensorflow 对象检测 API 和模型 efficientdet d0 检测大量对象(单个图像上超过 100 个)时,它大部分都能很好地检测到它们,但完全忽略了训练数据集中的其中一些对象。 我使用 labelimg 创建标签,并注意到模型没有检测到最后标记的对象。 有这样的例子: 在图像上,我首先标记左帧,然后是中央帧,然后是右帧 在 图像上,我首先标记左帧,然后标记右帧,最后标记中央帧 (屏幕截图上的性能通常很差,因为我专注于解决当前问题,而没有等待它完全训练)
我认为这是 pipeline.config 的问题,特别是 max_detections_per_class、max_total_detections 和 max_number_of_boxes 等参数。所以我尝试了数字,最高的是 每个类别的最大检测数:3000 最大检测总数:60000 最大盒子数量:60000 但它并没有改变结果,所以我怀疑配置或对象检测 API 中的某个地方存在隐藏的对象限制
这是我的 pipeline.config
model {
ssd {
num_classes: 90
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 512
max_dimension: 512
pad_to_max_dimension: true
}
}
feature_extractor {
type: "ssd_efficientnet-b0_bifpn_keras"
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.9999998989515007e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.029999999329447746
}
}
activation: SWISH
batch_norm {
decay: 0.9900000095367432
scale: true
epsilon: 0.0010000000474974513
}
force_use_bias: true
}
bifpn {
min_level: 3
max_level: 7
num_iterations: 3
num_filters: 64
}
}
box_coder {
faster_rcnn_box_coder {
y_scale: 1.0
x_scale: 1.0
height_scale: 1.0
width_scale: 1.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
use_dropout: True
dropout_keep_probability: 0.7
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.9999998989515007e-05
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.009999999776482582
}
}
activation: SWISH
batch_norm {
decay: 0.9900000095367432
scale: true
epsilon: 0.0010000000474974513
}
force_use_bias: true
}
depth: 64
num_layers_before_predictor: 3
kernel_size: 3
class_prediction_bias_init: -4.599999904632568
use_depthwise: true
}
}
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 5.0
aspect_ratios: 0.4
scales_per_octave: 3
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 0.2
iou_threshold: 0.5
max_detections_per_class: 3000
max_total_detections: 60000
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid_focal {
gamma: 1.5
alpha: 0.25
}
}
classification_weight: 1.0
localization_weight: 1.0
}
encode_background_as_zeros: true
normalize_loc_loss_by_codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false
add_background_class: false
}
}
train_config {
batch_size: 4
data_augmentation_options {
random_horizontal_flip {
}
random_patch_gaussian{
}
random_adjust_brightness{
}
random_adjust_contrast{
}
random_rgb_to_gray{
probability: 0.2
}
random_scale_crop_and_pad_to_square {
output_size: 512
scale_min: 0.8
scale_max: 1.2
}
}
sync_replicas: true
optimizer {
momentum_optimizer {
learning_rate {
cosine_decay_learning_rate {
learning_rate_base: 0.07999999821186066
total_steps: 300000
warmup_learning_rate: 0.0010000000474974513
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.8999999761581421
}
use_moving_average: false
}
fine_tune_checkpoint: "C:\\Tensorflow\\workspace\\pre_trained_models\\efficientdet_d0_coco17_tpu-32\\checkpoint\\ckpt-0"
num_steps: 300000
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 60000
unpad_groundtruth_tensors: false
fine_tune_checkpoint_type: "detection"
use_bfloat16: false
fine_tune_checkpoint_version: V2
}
train_input_reader: {
label_map_path: "C:\\Tensorflow\\Dataset\\label_map.pbtxt"
tf_record_input_reader {
input_path: "C:\\Tensorflow\\Dataset\\train4.record"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "C:\\Tensorflow\\Dataset\\label_map.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "C:\\Tensorflow\\workspace\\data\\val.record"
}
}
回复晚了,但我不久前遇到了这个问题,这是由于您的 pipeline.config 缺少一个或多个最大数量的框/可视化行。