想象一个底层过程,它从概率为 $ lpha$ 的正态分布和概率为 $1 - lpha$ 的均匀分布中抽取一个数字。 因此,此过程生成的观察到的数字序列遵循分布 $f$,即 2 个分量的混合以及 $lpha$ 和 $1 - lpha$ 的混合权重。 当观察到的序列是唯一的输入,但参数族已知时,您将如何使用 JAGS 对这种混合物进行建模?
示例(R 语言):
set.seed(8361299)
N <- 100
alpha <- 0.3
mu <- 5
max <- 50
# Which component to choose from?
latent_class <- rbinom(N, 1, alpha)
Y <- ifelse(latent_class, runif(N, min=mu, max=max), rnorm(N, mean=mu))
通过JAGS,应该可以获得混合重量,以及已知组分的参数?
相同参数分布的混合模型在 JAGS/BUGS 中非常简单,但具有不同参数响应的混合模型(如您的)则有点棘手。一种方法是使用“个数技巧”,我们手动计算响应的可能性(选择模型潜在部分指定的两个分布之一)并将其拟合到伯努利试验的(假)响应每个数据点。例如:
# Your data generation:
set.seed(8361299)
N <- 100
alpha <- 0.3
mu <- 5
max <- 50
# Which component to choose from?
latent_class <- rbinom(N, 1, alpha)
Y <- ifelse(latent_class, runif(N, min=mu, max=max), rnorm(N, mean=mu))
# The model:
model <- "model{
for(i in 1:N){
# Log density for the normal part:
ld_norm[i] <- logdensity.norm(Y[i], mu, tau)
# Log density for the uniform part:
ld_unif[i] <- logdensity.unif(Y[i], lower, upper)
# Select one of these two densities:
density[i] <- exp(ld_norm[i]*norm_chosen[i] + ld_unif[i]*(1-norm_chosen[i]))
# Generate a likelihood for the MCMC sampler:
Ones[i] ~ dbern(density[i])
# The latent class part as usual:
norm_chosen[i] ~ dbern(prob)
}
# Priors:
lower ~ dnorm(0, 10^-6)
upper ~ dnorm(0, 10^-6)
prob ~ dbeta(1,1)
mu ~ dnorm(0, 10^-6)
tau ~ dgamma(0.01, 0.01)
# Specify monitors, data and initial values using runjags:
#monitor# lower, upper, prob, mu, tau
#data# N, Y, Ones
#inits# lower, upper
}"
# Run the model using runjags (or use rjags if you prefer!)
library('runjags')
lower <- min(Y)-10
upper <- max(Y)+10
Ones <- rep(1,N)
results <- run.jags(model, sample=20000, thin=1)
results
plot(results)
这似乎可以很好地恢复你的参数(你的 alpha 是 1-prob),但要注意自相关(和收敛)。
马特
编辑:既然您询问了如何推广到两个以上的发行版,这里是等效的(但更通用)代码:
# The model:
model <- "model{
for(i in 1:N){
# Log density for the normal part:
ld_comp[i, 1] <- logdensity.norm(Y[i], mu, tau)
# Log density for the uniform part:
ld_comp[i, 2] <- logdensity.unif(Y[i], lower, upper)
# Select one of these two densities and normalise with a Constant:
density[i] <- exp(ld_comp[i, component_chosen[i]] - Constant)
# Generate a likelihood for the MCMC sampler:
Ones[i] ~ dbern(density[i])
# The latent class part using dcat:
component_chosen[i] ~ dcat(probs)
}
# Priors for 2 parameters using a dirichlet distribution:
probs ~ ddirch(c(1,1))
lower ~ dnorm(0, 10^-6)
upper ~ dnorm(0, 10^-6)
mu ~ dnorm(0, 10^-6)
tau ~ dgamma(0.01, 0.01)
# Specify monitors, data and initial values using runjags:
#monitor# lower, upper, probs, mu, tau
#data# N, Y, Ones, Constant
#inits# lower, upper, mu, tau
}"
library('runjags')
# Initial values to get the chains started:
lower <- min(Y)-10
upper <- max(Y)+10
mu <- 0
tau <- 0.01
Ones <- rep(1,N)
# The constant needs to be big enough to avoid any densities >1 but also small enough to calculate probabilities for observations of 1:
Constant <- 10
results <- run.jags(model, sample=10000, thin=1)
results
此代码将适用于您需要的任意多个分布,但预计自相关性随着分布的增加而呈指数级恶化。
请谁能帮我解决这个问题
mod1_字符串<- " model { for (i in 1:N) { # first distribution the negative binomial part: y[i, 1] ~ dnegbin(prob[i], phi) prob[i] <- phi / (phi + eps[i] * mu[i]) log(mu[i]) <- b1[P[i]] * x6[i] + b2[P[i]] * x28[i] eps[i] ~ dgamma(f[i], t[V[i]]) f[i] <- 1 + z[i] z[i] ~ dbern(k[V[i]]) P[i] ~ dcat(W[])
# second distribution, poisson: y[i, 2] ~ dpois(mu2[i]) mu2[i] <- b1[V[i]] * x6[i] + b2[V[i]] * x28[i] V[i] ~ dcat(W[]) # The latent class part using dcat: component_chosen[i] ~ dcat(probs) # Select one of these two densities and normalize with a Constant: density[i] <- exp(y[i, component_chosen[i]]) }
使用狄利克雷分布的 2 个参数的先验:probs ~
ddirch(c(1, 1))
for (j in 1:2) { # 先验 b1[j] ~ dnorm(0, 0.01) b2[j] ~ dnorm(0, 0.01) k[j] ~ 杜尼夫(0, 1) t[j] <- (1 - k[j]) / k[j] mean.eps[j] <- (t[j] + 2) / (t[j] * (t[j] + 1)) log.mean.eps[j] <- log(mean.eps[j]) }
W[1] ~ dunif(0, 1) W[2] <- 1 - W[1] phi ~ dgamma(0.1, 0.1) }"