"type": "customer",
"customer_id": "1-0000001",
"attributes": {
"email": "[email protected]",
"# of policies": 4,
"policies details": [
{
"POLICY_NO": 000000001,
"RECEIPT_NO": 420000001,
"PAYMENT_CODE": "RF35000000000000000000001"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000002,
"RECEIPT_NO": 420000002,
"PAYMENT_CODE": "RF35000000000000000000002"
"KLADOS": "Αυτοκινήτου"
......
为了达到这种格式,我尝试了以下方法:1st方法
# Create the new 'policy_details' field as dictionary
df['policy_details'] = df[['POLICY_NO', 'RECEIPT_NO', 'PAYMENT_CODE', 'KLADOS']].to_dict(orient='records')
# Create the new 'attributes' field as dictionary with the nested 'policy_details'
df['attributes'] = df[['email', '# of policies', 'policy_details']].to_dict(orient='records')
# JSON Section
# Create the JSON structure
j = df[['type', 'customer_id', 'attributes']].to_json(orient='records', force_ascii = False)
print(j)
'TYPE','customer_id'和属性未分组(每个策略_Details都重复)
[{
"type": "customer",
"customer_id": "1-0000001",
"attributes": {
"email": "[email protected]",
"# of policies": 4,
"policy_details": {
"POLICY_NO": "000000001",
"RECEIPT_NO": 420000001,
"PAYMENT_CODE": "RF35000000000000000000001",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000001",
"attributes": {
"email": "[email protected]",
"# of policies": 4,
"policy_details": {
"POLICY_NO": "000000002",
"RECEIPT_NO": "420000002",
"PAYMENT_CODE": "RF35000000000000000000002",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000001",
"attributes": {
"email": "[email protected]",
"# of policies": 4,
"policy_details": {
"POLICY_NO": "000000003",
"RECEIPT_NO": "420000003",
"PAYMENT_CODE": "RF35000000000000000000003",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000001",
"attributes": {
"email": "[email protected]",
"# of policies": 4,
"policy_details": {
"POLICY_NO": "000000004",
"RECEIPT_NO": "420000004",
"PAYMENT_CODE": "RF35000000000000000000004",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000002",
"attributes": {
"email": "[email protected]",
"# of policies": 6,
"policy_details": {
"POLICY_NO": "000000005",
"RECEIPT_NO": "420000005",
"PAYMENT_CODE": "RF35000000000000000000005",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000002",
"attributes": {
"email": "[email protected]",
"# of policies": 6,
"policy_details": {
"POLICY_NO": "000000006",
"RECEIPT_NO": "420000006",
"PAYMENT_CODE": "RF35000000000000000000006",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000002",
"attributes": {
"email": "[email protected]",
"# of policies": 6,
"policy_details": {
"POLICY_NO": "000000007",
"RECEIPT_NO": "420000007",
"PAYMENT_CODE": "null",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000002",
"attributes": {
"email": "[email protected]",
"# of policies": 6,
"policy_details": {
"POLICY_NO": "000000008",
"RECEIPT_NO": "420000008",
"PAYMENT_CODE": "RF35000000000000000000008",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000002",
"attributes": {
"email": "[email protected]",
"# of policies": 6,
"policy_details": {
"POLICY_NO": "000000009",
"RECEIPT_NO": "420000009",
"PAYMENT_CODE": "RF35000000000000000000009",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000002",
"attributes": {
"email": "[email protected]",
"# of policies": 6,
"policy_details": {
"POLICY_NO": "000000010",
"RECEIPT_NO": "420000010",
"PAYMENT_CODE": "null",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000003",
"attributes": {
"email": "[email protected]",
"# of policies": 5,
"policy_details": {
"POLICY_NO": "000000011",
"RECEIPT_NO": "420000011",
"PAYMENT_CODE": "RF35000000000000000000011",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000003",
"attributes": {
"email": "[email protected]",
"# of policies": 5,
"policy_details": {
"POLICY_NO": "000000012",
"RECEIPT_NO": "420000012",
"PAYMENT_CODE": "RF35000000000000000000012",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000003",
"attributes": {
"email": "[email protected]",
"# of policies": 5,
"policy_details": {
"POLICY_NO": "000000013",
"RECEIPT_NO": "420000013",
"PAYMENT_CODE": "null",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000003",
"attributes": {
"email": "[email protected]",
"# of policies": 5,
"policy_details": {
"POLICY_NO": "000000014",
"RECEIPT_NO": "420000014",
"PAYMENT_CODE": "RF35000000000000000000014",
"KLADOS": "Αυτοκινήτου"
}
}
}, {
"type": "customer",
"customer_id": "1-0000003",
"attributes": {
"email": "[email protected]",
"# of policies": 5,
"policy_details": {
"POLICY_NO": "000000015",
"RECEIPT_NO": "420000015",
"PAYMENT_CODE": "RF35000000000000000000015",
"KLADOS": "Αυτοκινήτου"
}
}
}
]
2ND方法
# Create the new 'attributes' field as dictionary
df['attributes'] = df[['email', '# of policies']].to_dict(orient='records')
# Convert the dictionary 'attributes' to a string
df['attributes'] = df[['attributes']].astype(str)
# JSON Section
# Create the JSON structure
j = (df.groupby(['type', 'customer_id', 'attributes'])
.apply(lambda x: x[['POLICY_NO', 'RECEIPT_NO','PAYMENT_CODE', 'KLADOS']].to_dict('records'), include_groups=False)
.reset_index()
.rename(columns={0:'policies details'})
.to_dict(orient='records')
)
# Convert list of dictionaries to JSON
json_output = json.dumps(j, indent=4, ensure_ascii=False)
print(json_output)
''TYPE','customer_id'和“属性”最终被分组,但“属性”表示为字符串,而不是字典(键:值对)
[
{
"type": "customer",
"customer_id": "1-0000001",
"attributes": "{'email': '[email protected]', '# of policies': 4}",
"policies details": [
{
"POLICY_NO": "000000001",
"RECEIPT_NO": 420000001,
"PAYMENT_CODE": "RF35000000000000000000001",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000002",
"RECEIPT_NO": "420000002",
"PAYMENT_CODE": "RF35000000000000000000002",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000003",
"RECEIPT_NO": "420000003",
"PAYMENT_CODE": "RF35000000000000000000003",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000004",
"RECEIPT_NO": "420000004",
"PAYMENT_CODE": "RF35000000000000000000004",
"KLADOS": "Αυτοκινήτου"
}
]
},
{
"type": "customer",
"customer_id": "1-0000002",
"attributes": "{'email': '[email protected]', '# of policies': 6}",
"policies details": [
{
"POLICY_NO": "000000005",
"RECEIPT_NO": "420000005",
"PAYMENT_CODE": "RF35000000000000000000005",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000006",
"RECEIPT_NO": "420000006",
"PAYMENT_CODE": "RF35000000000000000000006",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000007",
"RECEIPT_NO": "420000007",
"PAYMENT_CODE": "null",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000008",
"RECEIPT_NO": "420000008",
"PAYMENT_CODE": "RF35000000000000000000008",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000009",
"RECEIPT_NO": "420000009",
"PAYMENT_CODE": "RF35000000000000000000009",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000010",
"RECEIPT_NO": "420000010",
"PAYMENT_CODE": "null",
"KLADOS": "Αυτοκινήτου"
}
]
},
{
"type": "customer",
"customer_id": "1-0000003",
"attributes": "{'email': '[email protected]', '# of policies': 5}",
"policies details": [
{
"POLICY_NO": "000000011",
"RECEIPT_NO": "420000011",
"PAYMENT_CODE": "RF35000000000000000000011",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000012",
"RECEIPT_NO": "420000012",
"PAYMENT_CODE": "RF35000000000000000000012",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000013",
"RECEIPT_NO": "420000013",
"PAYMENT_CODE": "null",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000014",
"RECEIPT_NO": "420000014",
"PAYMENT_CODE": "RF35000000000000000000014",
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": "000000015",
"RECEIPT_NO": "420000015",
"PAYMENT_CODE": "RF35000000000000000000015",
"KLADOS": "Αυτοκινήτου"
}
]
}
]
我想实现的JSON结构。
[
{
"type": "customer",
"customer_id": "1-0000001",
"attributes": {
"email": "[email protected]",
"# of policies": 4,
"policies details": [
{
"POLICY_NO": 000000001,
"RECEIPT_NO": 420000001,
"PAYMENT_CODE": "RF35000000000000000000001"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000002,
"RECEIPT_NO": 420000002,
"PAYMENT_CODE": "RF35000000000000000000002"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000003,
"RECEIPT_NO": 420000003,
"PAYMENT_CODE": "RF35000000000000000000003"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000004,
"RECEIPT_NO": 420000004,
"PAYMENT_CODE": "RF35000000000000000000004"
"KLADOS": "Αυτοκινήτου"
}
]
}
},
{
"type": "customer",
"customer_id": "1-0000002",
"attributes": {
"email": "[email protected]",
"# of policies": 6,
"policies details": [
{
"POLICY_NO": 000000005,
"RECEIPT_NO": 420000005,
"PAYMENT_CODE": "RF35000000000000000000005"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000006,
"RECEIPT_NO": 420000006,
"PAYMENT_CODE": "RF35000000000000000000006"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000007,
"RECEIPT_NO": 420000007,
"PAYMENT_CODE": "null"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000008,
"RECEIPT_NO": 420000008,
"PAYMENT_CODE": "RF35000000000000000000008"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000009,
"RECEIPT_NO": 420000009,
"PAYMENT_CODE": "RF35000000000000000000009"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000010,
"RECEIPT_NO": 420000010,
"PAYMENT_CODE": "null"
"KLADOS": "Αυτοκινήτου"
}
]
}
},
{
"type": "customer",
"customer_id": "1-0000003",
"attributes": {
"email": "[email protected]",
"# of policies": 5,
"policies details": [
{
"POLICY_NO": 000000011,
"RECEIPT_NO": 420000011,
"PAYMENT_CODE": "RF35000000000000000000011"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000012,
"RECEIPT_NO": 420000012,
"PAYMENT_CODE": "RF35000000000000000000012"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000013,
"RECEIPT_NO": 420000013,
"PAYMENT_CODE": "null"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000014,
"RECEIPT_NO": 420000014,
"PAYMENT_CODE": "RF35000000000000000000014"
"KLADOS": "Αυτοκινήτου"
},
{
"POLICY_NO": 000000015,
"RECEIPT_NO": 420000015,
"PAYMENT_CODE": "RF35000000000000000000015"
"KLADOS": "Αυτοκινήτου"
}
]
}
}
]
尝试使用所需格式的一种方法
希望这对您有帮助,让我知道它是否对您有用。
import json
list_of_cust= []
// Group By on require columns
for x, y in df.groupby(by=["type", "customer_id",'email', '# of policies']):
// selecting required columns on group By
policy = y[['POLICY_NO', 'RECEIPT_NO', 'PAYMENT_CODE','KLADOS']]
obj = (x, policy)
list_of_cust.append(obj)
jsonstr = "["
for x in list_of_cust:
str = f''' {{ "type": "{x[0][0]}",
"customer_id": "{x[0][1]}",
"attributes": {{
"email": "{x[0][2]}",
"# of policies": {x[0][3]},
"policies details": {json.dumps(x[1].to_dict(orient="records"), indent=4, ensure_ascii=False)}
}}
}},'''
jsonstr= jsonstr + str
jsonstr= jsonstr[0:len(jsonstr)-1] + "]"