如何使用重复组中的嵌套结构将数据框架转换为JSON文件。 我的团队要求我将数据框架转换为具有特定嵌套结构的JSON文件。我的数据框是以下一个: df = pd.dataframe({ “类型”:['客户',“客户”,“客户”,'cu ...

问题描述 投票:0回答:1
我想实现的是创建一个由列“类型”,“ customer_id”和包含字段“电子邮件”和“策略#”的字典分组的JSON文件。 这三个要素用于分组。 属性字典必须包含另一个嵌套词典,称为policy_no,receipt_no,payment_code和klados。 必须重复每种组合“类型”,“ customer_id”和“属性”的“策略详细信息”字典,如下:

"type": "customer", "customer_id": "1-0000001", "attributes": { "email": "[email protected]", "# of policies": 4, "policies details": [ { "POLICY_NO": 000000001, "RECEIPT_NO": 420000001, "PAYMENT_CODE": "RF35000000000000000000001" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000002, "RECEIPT_NO": 420000002, "PAYMENT_CODE": "RF35000000000000000000002" "KLADOS": "Αυτοκινήτου" ......
为了达到这种格式,我尝试了以下方法:

1st方法

# Create the new 'policy_details' field as dictionary df['policy_details'] = df[['POLICY_NO', 'RECEIPT_NO', 'PAYMENT_CODE', 'KLADOS']].to_dict(orient='records') # Create the new 'attributes' field as dictionary with the nested 'policy_details' df['attributes'] = df[['email', '# of policies', 'policy_details']].to_dict(orient='records') # JSON Section # Create the JSON structure j = df[['type', 'customer_id', 'attributes']].to_json(orient='records', force_ascii = False) print(j)
  • But

    'TYPE','customer_id'和属性未分组(每个策略_Details都重复)

    1. “ policy_details”支架是卷曲的,不是正方形,如下所示:

      [{ "type": "customer", "customer_id": "1-0000001", "attributes": { "email": "[email protected]", "# of policies": 4, "policy_details": { "POLICY_NO": "000000001", "RECEIPT_NO": 420000001, "PAYMENT_CODE": "RF35000000000000000000001", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000001", "attributes": { "email": "[email protected]", "# of policies": 4, "policy_details": { "POLICY_NO": "000000002", "RECEIPT_NO": "420000002", "PAYMENT_CODE": "RF35000000000000000000002", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000001", "attributes": { "email": "[email protected]", "# of policies": 4, "policy_details": { "POLICY_NO": "000000003", "RECEIPT_NO": "420000003", "PAYMENT_CODE": "RF35000000000000000000003", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000001", "attributes": { "email": "[email protected]", "# of policies": 4, "policy_details": { "POLICY_NO": "000000004", "RECEIPT_NO": "420000004", "PAYMENT_CODE": "RF35000000000000000000004", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000002", "attributes": { "email": "[email protected]", "# of policies": 6, "policy_details": { "POLICY_NO": "000000005", "RECEIPT_NO": "420000005", "PAYMENT_CODE": "RF35000000000000000000005", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000002", "attributes": { "email": "[email protected]", "# of policies": 6, "policy_details": { "POLICY_NO": "000000006", "RECEIPT_NO": "420000006", "PAYMENT_CODE": "RF35000000000000000000006", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000002", "attributes": { "email": "[email protected]", "# of policies": 6, "policy_details": { "POLICY_NO": "000000007", "RECEIPT_NO": "420000007", "PAYMENT_CODE": "null", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000002", "attributes": { "email": "[email protected]", "# of policies": 6, "policy_details": { "POLICY_NO": "000000008", "RECEIPT_NO": "420000008", "PAYMENT_CODE": "RF35000000000000000000008", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000002", "attributes": { "email": "[email protected]", "# of policies": 6, "policy_details": { "POLICY_NO": "000000009", "RECEIPT_NO": "420000009", "PAYMENT_CODE": "RF35000000000000000000009", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000002", "attributes": { "email": "[email protected]", "# of policies": 6, "policy_details": { "POLICY_NO": "000000010", "RECEIPT_NO": "420000010", "PAYMENT_CODE": "null", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000003", "attributes": { "email": "[email protected]", "# of policies": 5, "policy_details": { "POLICY_NO": "000000011", "RECEIPT_NO": "420000011", "PAYMENT_CODE": "RF35000000000000000000011", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000003", "attributes": { "email": "[email protected]", "# of policies": 5, "policy_details": { "POLICY_NO": "000000012", "RECEIPT_NO": "420000012", "PAYMENT_CODE": "RF35000000000000000000012", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000003", "attributes": { "email": "[email protected]", "# of policies": 5, "policy_details": { "POLICY_NO": "000000013", "RECEIPT_NO": "420000013", "PAYMENT_CODE": "null", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000003", "attributes": { "email": "[email protected]", "# of policies": 5, "policy_details": { "POLICY_NO": "000000014", "RECEIPT_NO": "420000014", "PAYMENT_CODE": "RF35000000000000000000014", "KLADOS": "Αυτοκινήτου" } } }, { "type": "customer", "customer_id": "1-0000003", "attributes": { "email": "[email protected]", "# of policies": 5, "policy_details": { "POLICY_NO": "000000015", "RECEIPT_NO": "420000015", "PAYMENT_CODE": "RF35000000000000000000015", "KLADOS": "Αυτοκινήτου" } } } ]
    2. 2ND方法
    # Create the new 'attributes' field as dictionary df['attributes'] = df[['email', '# of policies']].to_dict(orient='records') # Convert the dictionary 'attributes' to a string df['attributes'] = df[['attributes']].astype(str) # JSON Section # Create the JSON structure j = (df.groupby(['type', 'customer_id', 'attributes']) .apply(lambda x: x[['POLICY_NO', 'RECEIPT_NO','PAYMENT_CODE', 'KLADOS']].to_dict('records'), include_groups=False) .reset_index() .rename(columns={0:'policies details'}) .to_dict(orient='records') ) # Convert list of dictionaries to JSON json_output = json.dumps(j, indent=4, ensure_ascii=False) print(json_output)
  • 这个时间:

    ''TYPE','customer_id'和“属性”最终被分组,但“属性”表示为字符串,而不是字典(键:值对)

    1. “ policy_details”具有方括号,但没有嵌套(如下所示,它位于相同的“属性”级别:

      [ { "type": "customer", "customer_id": "1-0000001", "attributes": "{'email': '[email protected]', '# of policies': 4}", "policies details": [ { "POLICY_NO": "000000001", "RECEIPT_NO": 420000001, "PAYMENT_CODE": "RF35000000000000000000001", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000002", "RECEIPT_NO": "420000002", "PAYMENT_CODE": "RF35000000000000000000002", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000003", "RECEIPT_NO": "420000003", "PAYMENT_CODE": "RF35000000000000000000003", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000004", "RECEIPT_NO": "420000004", "PAYMENT_CODE": "RF35000000000000000000004", "KLADOS": "Αυτοκινήτου" } ] }, { "type": "customer", "customer_id": "1-0000002", "attributes": "{'email': '[email protected]', '# of policies': 6}", "policies details": [ { "POLICY_NO": "000000005", "RECEIPT_NO": "420000005", "PAYMENT_CODE": "RF35000000000000000000005", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000006", "RECEIPT_NO": "420000006", "PAYMENT_CODE": "RF35000000000000000000006", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000007", "RECEIPT_NO": "420000007", "PAYMENT_CODE": "null", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000008", "RECEIPT_NO": "420000008", "PAYMENT_CODE": "RF35000000000000000000008", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000009", "RECEIPT_NO": "420000009", "PAYMENT_CODE": "RF35000000000000000000009", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000010", "RECEIPT_NO": "420000010", "PAYMENT_CODE": "null", "KLADOS": "Αυτοκινήτου" } ] }, { "type": "customer", "customer_id": "1-0000003", "attributes": "{'email': '[email protected]', '# of policies': 5}", "policies details": [ { "POLICY_NO": "000000011", "RECEIPT_NO": "420000011", "PAYMENT_CODE": "RF35000000000000000000011", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000012", "RECEIPT_NO": "420000012", "PAYMENT_CODE": "RF35000000000000000000012", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000013", "RECEIPT_NO": "420000013", "PAYMENT_CODE": "null", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000014", "RECEIPT_NO": "420000014", "PAYMENT_CODE": "RF35000000000000000000014", "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": "000000015", "RECEIPT_NO": "420000015", "PAYMENT_CODE": "RF35000000000000000000015", "KLADOS": "Αυτοκινήτου" } ] } ]
    2. 我想实现的JSON结构。
      
      [ { "type": "customer", "customer_id": "1-0000001", "attributes": { "email": "[email protected]", "# of policies": 4, "policies details": [ { "POLICY_NO": 000000001, "RECEIPT_NO": 420000001, "PAYMENT_CODE": "RF35000000000000000000001" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000002, "RECEIPT_NO": 420000002, "PAYMENT_CODE": "RF35000000000000000000002" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000003, "RECEIPT_NO": 420000003, "PAYMENT_CODE": "RF35000000000000000000003" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000004, "RECEIPT_NO": 420000004, "PAYMENT_CODE": "RF35000000000000000000004" "KLADOS": "Αυτοκινήτου" } ] } }, { "type": "customer", "customer_id": "1-0000002", "attributes": { "email": "[email protected]", "# of policies": 6, "policies details": [ { "POLICY_NO": 000000005, "RECEIPT_NO": 420000005, "PAYMENT_CODE": "RF35000000000000000000005" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000006, "RECEIPT_NO": 420000006, "PAYMENT_CODE": "RF35000000000000000000006" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000007, "RECEIPT_NO": 420000007, "PAYMENT_CODE": "null" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000008, "RECEIPT_NO": 420000008, "PAYMENT_CODE": "RF35000000000000000000008" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000009, "RECEIPT_NO": 420000009, "PAYMENT_CODE": "RF35000000000000000000009" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000010, "RECEIPT_NO": 420000010, "PAYMENT_CODE": "null" "KLADOS": "Αυτοκινήτου" } ] } }, { "type": "customer", "customer_id": "1-0000003", "attributes": { "email": "[email protected]", "# of policies": 5, "policies details": [ { "POLICY_NO": 000000011, "RECEIPT_NO": 420000011, "PAYMENT_CODE": "RF35000000000000000000011" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000012, "RECEIPT_NO": 420000012, "PAYMENT_CODE": "RF35000000000000000000012" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000013, "RECEIPT_NO": 420000013, "PAYMENT_CODE": "null" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000014, "RECEIPT_NO": 420000014, "PAYMENT_CODE": "RF35000000000000000000014" "KLADOS": "Αυτοκινήτου" }, { "POLICY_NO": 000000015, "RECEIPT_NO": 420000015, "PAYMENT_CODE": "RF35000000000000000000015" "KLADOS": "Αυτοκινήτου" } ] } } ]
这里是您可以使用pandasgroupby

尝试使用所需格式的一种方法

希望这对您有帮助,让我知道它是否对您有用。

import json 
list_of_cust= []
// Group By on require columns 
for x, y in df.groupby(by=["type", "customer_id",'email', '# of policies']):
    // selecting required columns on group By
    policy = y[['POLICY_NO', 'RECEIPT_NO', 'PAYMENT_CODE','KLADOS']]
    obj = (x, policy)
    list_of_cust.append(obj)

jsonstr = "["
for x in list_of_cust:
    str = f''' {{ "type": "{x[0][0]}",
        "customer_id": "{x[0][1]}",
        "attributes": {{
            "email": "{x[0][2]}",
            "# of policies": {x[0][3]},
            "policies details": {json.dumps(x[1].to_dict(orient="records"), indent=4, ensure_ascii=False)}
            }}
        }},'''
    jsonstr= jsonstr + str
jsonstr= jsonstr[0:len(jsonstr)-1] + "]"
python json
1个回答
0
投票

最新问题
© www.soinside.com 2019 - 2025. All rights reserved.