大家好当我运行下面的代码时,我们正在开发一个人脸识别应用程序,正如您在照片中看到的那样,它仅适用于一张脸(红色方块),我猜它不会扫描训练数据中的其他人脸我的预测函数只运行一次。不要在循环中。
# coding: utf-8
import cv2
import os
import numpy as np
suclular = ["Bilinmeyen", "Veli Eroglu", "Ali Eroglu"]
def detect_face(img):
# ALGORİMA için Gri Yapıyoruz.
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# yüz tanımlama için geereken haarcascade
face_cascade = cv2.CascadeClassifier(
'opencv-files/lbpcascade_frontalface.xml')
faces = face_cascade.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=5) # YÜZ TANIMLAMA
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
if (len(faces) == 0):
return None, None # Yuz bulunamazsa...
(x, y, w, h) = faces[0]
return gray[y:y + w, x:x + h], faces[0]
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.train(faces, np.array(labels))
def draw_rectangle(img, rect):
(x, y, w, h) = rect
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
def draw_text(img, text, x, y):
cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 0, 255), 2)
def predict(test_img):
img = test_img.copy()
face, rect = detect_face(img)
label, confidence = face_recognizer.predict(face)
print(confidence)
label_text = suclular[label]
if confidence > 42 and confidence < 70:
label_text = "Tespit Edilemedi."
print(label_text)
elif confidence > 70:
label_text = "Bilinmiyor"
draw_rectangle(img, rect)
draw_text(img, label_text, rect[0], rect[1] - 5)
return img
print("Predicting images...")
test_img1 = cv2.imread("test-data/test8jpg.jpg")
predicted_img1 = predict(test_img1)
print("Prediction complete")
cv2.imshow("SONUC", cv2.resize(predicted_img1, (400, 500)))
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.waitKey(1)
cv2.destroyAllWindows()
您的预测应该在 for 循环中...您只从
detect_face
函数返回一个面,这是最后一个面,即使您循环遍历每个面并为每个面制作一个矩形...您应该做这样的事情:
def predict_face(img):
# ALGORİMA için Gri Yapıyoruz.
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# yüz tanımlama için geereken haarcascade
face_cascade = cv2.CascadeClassifier(
'opencv-files/lbpcascade_frontalface.xml')
faces = face_cascade.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=5) # YÜZ TANIMLAMA
detected_faces = []
i = 0
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
detected_face = gray[y:y + w, x:x + h]
label, confidence = face_recognizer.predict(detected_face) # Prediction inside for loop
draw_rectangle(img, faces[i]) # draw the red rectangles for every predicted face
draw_text(img, label, x, y - 5) # draw the predicted label on top of the box
i += 1
我已经有一个人脸检测应用程序 在这里
#fdm:
import time
import cv2 as cv
import mediapipe as mp
import numpy as np
import argparse
import imutils
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("-D", "--device", help='choose your input(availble: mp4 leave empty for camera)', default=0)
parser.add_argument("-S", "--size", help='cap width', type=int, default=640)
args = parser.parse_args()
return args
args = get_args()
global cap_device
cap_device = args.device
global size
size = args.size
mp_face_detection = mp.solutions.face_detection
cap_device = args.device
cap = cv.VideoCapture(cap_device)
with mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5) as face_detector:
frame_counter = 0
fonts = cv.FONT_HERSHEY_PLAIN
start_time = time.time()
while True:
frame_counter += 1
ret, frame = cap.read()
if ret is False:
break
rgb_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
frame = imutils.resize(frame, width=size)
results = face_detector.process(rgb_frame)
frame_height, frame_width, c = frame.shape
if results.detections:
for face in results.detections:
face_react = np.multiply(
[
face.location_data.relative_bounding_box.xmin,
face.location_data.relative_bounding_box.ymin,
face.location_data.relative_bounding_box.width,
face.location_data.relative_bounding_box.height,
],
[frame_width, frame_height, frame_width, frame_height]).astype(int)
cv.rectangle(frame, face_react, color=(255, 255, 255), thickness=2)
key_points = np.array([(p.x, p.y) for p in face.location_data.relative_keypoints])
key_points_coords = np.multiply(key_points,[frame_width,frame_height]).astype(int)
fps = frame_counter / (time.time() - start_time)
cv.putText(frame,f"FPS: {fps:.2f}",(10, 30),cv.FONT_HERSHEY_DUPLEX,0.7,(0, 255, 255),2,)
key = cv.waitKey(1)
if key == 27:
break
cv.imshow("face detection", frame)
cap.release()
cv.destroyAllWindows()