答案here有很多关于在堆积条形图中订购条形部分的重要信息。经过各种各样的选择,并获得我想要的大部分订单后,NA不断出现在堆栈的底部,我不喜欢。
ggplot(df, aes(x=time, fill=forcats::fct_rev(factor(able, levels=rev(likely))))) +
geom_bar() +
theme(axis.text.x = element_text(angle = 315, hjust = 0),
plot.margin = margin(10, 40, 10, 10))
x轴上的NA位于末尾,这很棒。一般而言,将NAs放在最后是很好的。但是对于堆叠条,我认为开始是底部,最后是顶部(因为底部的东西更容易比较。)
(Marimekko图表可能会更好,但是我试图让ggmosaic和其他各种东西工作一段时间后我放弃了。)
编辑:我发现了一些我修改过的代码来制作Marimekko图表(希望给予信任,但却忘记了我发现它的位置。)它确实将NAs放在了顶部。
df %>%
group_by(satisfied, time) %>%
summarise(n = n()) %>%
mutate(x.width = sum(n)) %>%
ggplot(aes(x=satisfied, y=n)) +
geom_col(aes(width=x.width, fill=time),
colour = "white", size=2, position=position_fill(reverse = T)) +
geom_text(aes(label=n),
position=position_fill(vjust = 0.5)) +
facet_grid(~ satisfied, space = 'free', scales='free', switch='x') +
#scale_x_discrete(name="a") +
scale_y_continuous(labels=scales::percent) +
theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.title.y = element_blank(),
strip.text = element_text(angle = 270, hjust = 0),
strip.background = element_blank(),
panel.spacing = unit(0,'pt'))
@ z-lin请求的序列化数据:
> dput(df)
structure(list(explanatory = c(8L, 3L, 13L, 10L, 5L, 9L, NA,
5L, 1L, 4L, 4L, 3L, 2L, 2L, 2L, NA, 2L, NA, 4L, 3L, 2L, NA, 6L,
NA, 2L, 6L, 5L, 1L, 3L, 2L, 1L, NA, 3L, 2L, 5L, 6L, 3L, 7L, 13L,
4L, 4L, 3L, 1L, 2L, 2L, NA, 7L, 1L, NA, 12L, 13L, 4L, 6L, 2L,
3L, 1L, 1L, 1L, 3L, 9L, 6L, 4L, 5L, 2L, 10L, 4L, 7L, NA, 4L,
5L, 1L, 7L, 12L, 4L, 1L, 2L, 5L, 3L, 13L, 6L, 13L, 4L, NA, 2L,
7L, 4L, 12L, 3L, 2L, 5L, 9L, 6L, 13L, 2L, 12L, 4L, 13L, 2L, 7L,
NA, NA, NA, 4L, 5L, NA, NA, 7L, 5L, 5L, NA, 2L, 4L, 5L, 13L,
5L, 2L, 2L, 4L, 7L, 4L, 7L, 6L, 5L, 5L, NA, 3L, 2L, NA, 3L, 5L,
11L, 2L, 2L, 3L, 3L, 9L, 1L, 2L, 3L, 5L, 12L, 2L, 5L, 3L, 5L,
5L, 12L, 2L, 2L, 3L, 4L, 1L, 1L, 3L, 2L, 3L, 4L, 13L, 3L, 3L,
NA, NA, 6L, 5L, 3L, 1L, 8L, 6L, 9L, 5L, 8L, 1L, 1L, 3L, 5L, 6L,
3L, 1L, 1L, 8L, 4L, 13L, 13L, 4L, 2L, NA, 3L, 1L, 3L, 4L, 5L,
1L, 5L, 8L, 1L, 4L, 5L, 4L, 4L, 12L, 9L, NA, 2L, NA, NA, 5L,
4L, 1L, 12L, 6L, NA, NA, NA, 4L, 12L, NA, 4L, 2L, 11L, NA, 5L,
2L, 2L, 1L, NA, 6L, NA, 12L, 3L, 2L, 4L, NA, 1L, 6L, 8L, NA,
4L, 6L, 5L, 6L, NA, 4L, NA, 2L, 7L, 8L, 3L, 6L, NA, 4L, NA, 2L,
6L, 4L, 5L, NA, 12L, 2L, 12L, 6L, 6L, 13L, NA, 3L, 4L, 2L, NA,
11L, 12L, 4L, 8L, 5L, 1L, 5L, 1L, 1L, 7L, 4L, 1L, 2L, 7L, 2L,
3L, 5L, NA, 5L, 4L, NA, 6L, 9L, 2L, 1L, NA, 5L, 4L, NA, 1L, 6L,
5L, 2L, 9L, 4L, 5L, 3L, 5L, 10L, 6L, 4L, 12L, 3L, 12L, 2L, 1L,
1L, 5L, 9L, 2L, 2L, 2L, NA, 11L, 4L, 9L, NA, 12L, 2L, 1L, 10L,
4L, 3L, 5L, NA, 10L, 3L, 2L, 8L, 3L, 4L, 9L, 4L, 10L, 1L, 2L,
6L, 13L, 8L, 4L, 4L, 9L, 1L, 2L, 4L, 1L, 8L, 5L, 9L, 9L, 4L,
4L, 6L, 3L, 1L, 2L, 5L, 3L, 1L, 1L, 12L, 1L, 2L, 3L, 4L, 10L,
2L, 2L, 4L, 5L, 7L, 7L, 5L, 4L, 3L, 4L, 6L, 13L, 3L, NA, 3L,
2L, 2L, 1L, NA, NA, 1L, NA, 4L, 2L, 8L, 4L, 8L, 3L, NA, 2L, 8L,
8L, 4L, 5L, 4L, 2L, 4L, 2L, 5L, 1L, 6L, 5L, 7L, 4L, 3L, 5L, 3L,
3L, 2L, 4L, 3L, 1L, 6L, 4L, 2L, 13L, 13L, NA, 5L, 5L, 2L, 5L,
2L, 8L), response = c(3L, 5L, 4L, 4L, 4L, 3L, NA, 4L, 5L, 5L,
4L, 4L, 5L, 5L, 4L, NA, 4L, NA, 2L, 5L, 4L, 4L, 5L, 4L, 5L, 3L,
4L, 5L, 5L, 3L, 5L, 4L, 5L, 5L, 5L, 4L, 5L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 4L, 4L, 4L, 4L, 5L, 4L, 4L, 5L, 5L, 4L, 4L, 4L, 4L, 5L,
4L, 3L, 5L, 4L, 5L, 4L, 4L, 5L, 4L, 4L, 4L, 5L, 4L, 4L, 2L, 5L,
5L, 4L, 3L, 5L, 4L, 5L, 4L, 5L, 4L, 4L, 4L, 5L, 3L, 4L, 3L, 4L,
3L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 4L, NA, NA, NA, 5L, 4L, NA, NA,
4L, 4L, 4L, NA, 4L, 5L, 3L, 4L, 4L, 5L, 5L, 5L, 4L, 5L, 5L, 5L,
5L, 5L, 2L, 4L, 4L, NA, 4L, 5L, 4L, 3L, 4L, 4L, 5L, 4L, 4L, 4L,
3L, 4L, 4L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 4L, 4L, 3L, 2L,
5L, 5L, 5L, 5L, 2L, 5L, NA, NA, 4L, 3L, 4L, 4L, 4L, 4L, 2L, 3L,
4L, 4L, 4L, 4L, 5L, 5L, 4L, 5L, 4L, 4L, 4L, 5L, 5L, 5L, 4L, 4L,
3L, 4L, 4L, 5L, 4L, 5L, 4L, 4L, 4L, 4L, 4L, 5L, 4L, 4L, 3L, NA,
5L, NA, NA, 3L, 3L, 5L, 4L, 4L, NA, 4L, NA, 5L, 4L, NA, 4L, 5L,
5L, 3L, 4L, 4L, 4L, 4L, NA, 5L, NA, 4L, 4L, 4L, 5L, 5L, 4L, 4L,
4L, 5L, 5L, 4L, 4L, 5L, NA, 5L, NA, 4L, 5L, 4L, 4L, 1L, NA, 4L,
NA, 4L, 5L, 2L, 5L, NA, 4L, 4L, 5L, 4L, 4L, 4L, NA, 4L, 5L, 4L,
3L, 5L, 5L, 5L, 2L, 3L, 5L, 5L, 4L, 4L, 5L, 4L, 3L, 4L, 4L, 5L,
4L, 5L, NA, 5L, 5L, NA, 5L, 4L, 4L, 5L, NA, 5L, 4L, NA, 5L, 5L,
5L, 4L, 3L, 5L, 4L, 4L, 2L, 5L, 4L, 4L, 5L, 4L, 5L, 4L, 5L, 4L,
4L, 4L, 4L, 4L, 5L, NA, 4L, 4L, 5L, NA, 4L, 4L, 4L, 3L, 3L, 5L,
5L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 5L,
4L, 3L, 4L, 5L, 4L, 4L, 5L, 5L, 4L, 5L, 5L, 4L, 5L, 4L, 3L, 3L,
4L, 5L, 3L, 4L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 4L, 3L, 5L, 5L, 4L, 4L, 5L, NA, 4L, 4L, 4L, 5L, 3L, NA, 3L,
3L, 4L, 5L, 5L, 5L, 4L, 5L, NA, 5L, 5L, 5L, 4L, 4L, 2L, 4L, 4L,
5L, 5L, 4L, 4L, 5L, 5L, 4L, 3L, 5L, 5L, 4L, 4L, 4L, 5L, 4L, 4L,
5L, 5L, 4L, 5L, NA, 4L, 4L, 4L, 4L, 3L, 4L), time = structure(c(8L,
3L, 13L, 10L, 5L, 9L, NA, 5L, 1L, 4L, 4L, 3L, 2L, 2L, 2L, NA,
2L, NA, 4L, 3L, 2L, NA, 6L, NA, 2L, 6L, 5L, 1L, 3L, 2L, 1L, NA,
3L, 2L, 5L, 6L, 3L, 7L, 13L, 4L, 4L, 3L, 1L, 2L, 2L, NA, 7L,
1L, NA, 12L, 13L, 4L, 6L, 2L, 3L, 1L, 1L, 1L, 3L, 9L, 6L, 4L,
5L, 2L, 10L, 4L, 7L, NA, 4L, 5L, 1L, 7L, 12L, 4L, 1L, 2L, 5L,
3L, 13L, 6L, 13L, 4L, NA, 2L, 7L, 4L, 12L, 3L, 2L, 5L, 9L, 6L,
13L, 2L, 12L, 4L, 13L, 2L, 7L, NA, NA, NA, 4L, 5L, NA, NA, 7L,
5L, 5L, NA, 2L, 4L, 5L, 13L, 5L, 2L, 2L, 4L, 7L, 4L, 7L, 6L,
5L, 5L, NA, 3L, 2L, NA, 3L, 5L, 11L, 2L, 2L, 3L, 3L, 9L, 1L,
2L, 3L, 5L, 12L, 2L, 5L, 3L, 5L, 5L, 12L, 2L, 2L, 3L, 4L, 1L,
1L, 3L, 2L, 3L, 4L, 13L, 3L, 3L, NA, NA, 6L, 5L, 3L, 1L, 8L,
6L, 9L, 5L, 8L, 1L, 1L, 3L, 5L, 6L, 3L, 1L, 1L, 8L, 4L, 13L,
13L, 4L, 2L, NA, 3L, 1L, 3L, 4L, 5L, 1L, 5L, 8L, 1L, 4L, 5L,
4L, 4L, 12L, 9L, NA, 2L, NA, NA, 5L, 4L, 1L, 12L, 6L, NA, NA,
NA, 4L, 12L, NA, 4L, 2L, 11L, NA, 5L, 2L, 2L, 1L, NA, 6L, NA,
12L, 3L, 2L, 4L, NA, 1L, 6L, 8L, NA, 4L, 6L, 5L, 6L, NA, 4L,
NA, 2L, 7L, 8L, 3L, 6L, NA, 4L, NA, 2L, 6L, 4L, 5L, NA, 12L,
2L, 12L, 6L, 6L, 13L, NA, 3L, 4L, 2L, NA, 11L, 12L, 4L, 8L, 5L,
1L, 5L, 1L, 1L, 7L, 4L, 1L, 2L, 7L, 2L, 3L, 5L, NA, 5L, 4L, NA,
6L, 9L, 2L, 1L, NA, 5L, 4L, NA, 1L, 6L, 5L, 2L, 9L, 4L, 5L, 3L,
5L, 10L, 6L, 4L, 12L, 3L, 12L, 2L, 1L, 1L, 5L, 9L, 2L, 2L, 2L,
NA, 11L, 4L, 9L, NA, 12L, 2L, 1L, 10L, 4L, 3L, 5L, NA, 10L, 3L,
2L, 8L, 3L, 4L, 9L, 4L, 10L, 1L, 2L, 6L, 13L, 8L, 4L, 4L, 9L,
1L, 2L, 4L, 1L, 8L, 5L, 9L, 9L, 4L, 4L, 6L, 3L, 1L, 2L, 5L, 3L,
1L, 1L, 12L, 1L, 2L, 3L, 4L, 10L, 2L, 2L, 4L, 5L, 7L, 7L, 5L,
4L, 3L, 4L, 6L, 13L, 3L, NA, 3L, 2L, 2L, 1L, NA, NA, 1L, NA,
4L, 2L, 8L, 4L, 8L, 3L, NA, 2L, 8L, 8L, 4L, 5L, 4L, 2L, 4L, 2L,
5L, 1L, 6L, 5L, 7L, 4L, 3L, 5L, 3L, 3L, 2L, 4L, 3L, 1L, 6L, 4L,
2L, 13L, 13L, NA, 5L, 5L, 2L, 5L, 2L, 8L), .Label = c("0-15 minutes",
"15-30 minutes", "30-45 minutes", "45-60 minutes (1 hour)", "60 minutes (1 hour) - 75 minutes",
"75-90 minutes", "90-105 minutes", "105-120 minutes (2 hours)",
"120 minutes (2 hours) - 135 minutes", "135-150 minutes", "150-165 minutes",
"165-180 minutes (3 hours)", "More than 3 hours"), class = "factor"),
able = c("Neither Agree nor Disagree", "Strongly Agree",
"Agree", "Agree", "Agree", "Neither Agree nor Disagree",
NA, "Agree", "Strongly Agree", "Strongly Agree", "Agree",
"Agree", "Strongly Agree", "Strongly Agree", "Agree", NA,
"Agree", NA, "Disagree", "Strongly Agree", "Agree", "Agree",
"Strongly Agree", "Agree", "Strongly Agree", "Neither Agree nor Disagree",
"Agree", "Strongly Agree", "Strongly Agree", "Neither Agree nor Disagree",
"Strongly Agree", "Agree", "Strongly Agree", "Strongly Agree",
"Strongly Agree", "Agree", "Strongly Agree", "Agree", "Agree",
"Agree", "Agree", "Strongly Agree", "Strongly Agree", "Strongly Agree",
"Agree", "Agree", "Agree", "Agree", "Strongly Agree", "Agree",
"Agree", "Strongly Agree", "Strongly Agree", "Agree", "Agree",
"Agree", "Agree", "Strongly Agree", "Agree", "Neither Agree nor Disagree",
"Strongly Agree", "Agree", "Strongly Agree", "Agree", "Agree",
"Strongly Agree", "Agree", "Agree", "Agree", "Strongly Agree",
"Agree", "Agree", "Disagree", "Strongly Agree", "Strongly Agree",
"Agree", "Neither Agree nor Disagree", "Strongly Agree",
"Agree", "Strongly Agree", "Agree", "Strongly Agree", "Agree",
"Agree", "Agree", "Strongly Agree", "Neither Agree nor Disagree",
"Agree", "Neither Agree nor Disagree", "Agree", "Neither Agree nor Disagree",
"Agree", "Agree", "Agree", "Strongly Agree", "Strongly Agree",
"Strongly Agree", "Strongly Agree", "Agree", NA, NA, NA,
"Strongly Agree", "Agree", NA, NA, "Agree", "Agree", "Agree",
NA, "Agree", "Strongly Agree", "Neither Agree nor Disagree",
"Agree", "Agree", "Strongly Agree", "Strongly Agree", "Strongly Agree",
"Agree", "Strongly Agree", "Strongly Agree", "Strongly Agree",
"Strongly Agree", "Strongly Agree", "Disagree", "Agree",
"Agree", NA, "Agree", "Strongly Agree", "Agree", "Neither Agree nor Disagree",
"Agree", "Agree", "Strongly Agree", "Agree", "Agree", "Agree",
"Neither Agree nor Disagree", "Agree", "Agree", "Strongly Agree",
"Agree", "Agree", "Agree", "Agree", "Agree", "Agree", "Strongly Agree",
"Strongly Agree", "Agree", "Agree", "Neither Agree nor Disagree",
"Disagree", "Strongly Agree", "Strongly Agree", "Strongly Agree",
"Strongly Agree", "Disagree", "Strongly Agree", NA, NA, "Agree",
"Neither Agree nor Disagree", "Agree", "Agree", "Agree",
"Agree", "Disagree", "Neither Agree nor Disagree", "Agree",
"Agree", "Agree", "Agree", "Strongly Agree", "Strongly Agree",
"Agree", "Strongly Agree", "Agree", "Agree", "Agree", "Strongly Agree",
"Strongly Agree", "Strongly Agree", "Agree", "Agree", "Neither Agree nor Disagree",
"Agree", "Agree", "Strongly Agree", "Agree", "Strongly Agree",
"Agree", "Agree", "Agree", "Agree", "Agree", "Strongly Agree",
"Agree", "Agree", "Neither Agree nor Disagree", NA, "Strongly Agree",
NA, NA, "Neither Agree nor Disagree", "Neither Agree nor Disagree",
"Strongly Agree", "Agree", "Agree", NA, "Agree", NA, "Strongly Agree",
"Agree", NA, "Agree", "Strongly Agree", "Strongly Agree",
"Neither Agree nor Disagree", "Agree", "Agree", "Agree",
"Agree", NA, "Strongly Agree", NA, "Agree", "Agree", "Agree",
"Strongly Agree", "Strongly Agree", "Agree", "Agree", "Agree",
"Strongly Agree", "Strongly Agree", "Agree", "Agree", "Strongly Agree",
NA, "Strongly Agree", NA, "Agree", "Strongly Agree", "Agree",
"Agree", "Strongly Disagree", NA, "Agree", NA, "Agree", "Strongly Agree",
"Disagree", "Strongly Agree", NA, "Agree", "Agree", "Strongly Agree",
"Agree", "Agree", "Agree", NA, "Agree", "Strongly Agree",
"Agree", "Neither Agree nor Disagree", "Strongly Agree",
"Strongly Agree", "Strongly Agree", "Disagree", "Neither Agree nor Disagree",
"Strongly Agree", "Strongly Agree", "Agree", "Agree", "Strongly Agree",
"Agree", "Neither Agree nor Disagree", "Agree", "Agree",
"Strongly Agree", "Agree", "Strongly Agree", NA, "Strongly Agree",
"Strongly Agree", NA, "Strongly Agree", "Agree", "Agree",
"Strongly Agree", NA, "Strongly Agree", "Agree", NA, "Strongly Agree",
"Strongly Agree", "Strongly Agree", "Agree", "Neither Agree nor Disagree",
"Strongly Agree", "Agree", "Agree", "Disagree", "Strongly Agree",
"Agree", "Agree", "Strongly Agree", "Agree", "Strongly Agree",
"Agree", "Strongly Agree", "Agree", "Agree", "Agree", "Agree",
"Agree", "Strongly Agree", NA, "Agree", "Agree", "Strongly Agree",
NA, "Agree", "Agree", "Agree", "Neither Agree nor Disagree",
"Neither Agree nor Disagree", "Strongly Agree", "Strongly Agree",
"Agree", "Agree", "Agree", "Agree", "Agree", "Agree", "Strongly Agree",
"Strongly Agree", "Strongly Agree", "Strongly Agree", "Agree",
"Agree", "Strongly Agree", "Strongly Agree", "Strongly Agree",
"Agree", "Neither Agree nor Disagree", "Agree", "Strongly Agree",
"Agree", "Agree", "Strongly Agree", "Strongly Agree", "Agree",
"Strongly Agree", "Strongly Agree", "Agree", "Strongly Agree",
"Agree", "Neither Agree nor Disagree", "Neither Agree nor Disagree",
"Agree", "Strongly Agree", "Neither Agree nor Disagree",
"Agree", "Neither Agree nor Disagree", "Agree", "Agree",
"Agree", "Agree", "Agree", "Agree", "Agree", "Agree", "Agree",
"Agree", "Strongly Agree", "Strongly Agree", "Agree", "Neither Agree nor Disagree",
"Strongly Agree", "Strongly Agree", "Agree", "Agree", "Strongly Agree",
NA, "Agree", "Agree", "Agree", "Strongly Agree", "Neither Agree nor Disagree",
NA, "Neither Agree nor Disagree", "Neither Agree nor Disagree",
"Agree", "Strongly Agree", "Strongly Agree", "Strongly Agree",
"Agree", "Strongly Agree", NA, "Strongly Agree", "Strongly Agree",
"Strongly Agree", "Agree", "Agree", "Disagree", "Agree",
"Agree", "Strongly Agree", "Strongly Agree", "Agree", "Agree",
"Strongly Agree", "Strongly Agree", "Agree", "Neither Agree nor Disagree",
"Strongly Agree", "Strongly Agree", "Agree", "Agree", "Agree",
"Strongly Agree", "Agree", "Agree", "Strongly Agree", "Strongly Agree",
"Agree", "Strongly Agree", NA, "Agree", "Agree", "Agree",
"Agree", "Neither Agree nor Disagree", "Agree")), row.names = c(NA,
-437L), class = "data.frame")
这里的问题是factor()
默认排除NA
;你必须覆盖默认值。
这是密谋NA
s:
likely <- c(NA, "Strongly Disagree", "Disagree", "Neither Agree nor Disagree",
"Agree", "Strongly Agree")
library(ggplot2)
ggplot(df, aes(x = time, fill = factor(able, levels = likely, exclude = NULL)
)) +
geom_bar() +
theme(axis.text.x = element_text(angle = 315, hjust = 0),
plot.margin = margin(10, 40, 10, 10))
此外,NA
也可以移动到图例的顶部:
ggplot(df, aes(x = time, fill = factor(able, levels = likely, exclude = NULL)
)) +
geom_bar() +
theme(axis.text.x = element_text(angle = 315, hjust = 0),
plot.margin = margin(10, 40, 10, 10)) +
scale_fill_discrete(breaks = likely)