所以当我尝试运行/构建代码时,它卡在了阶段并且没有错误显示但是代码没有发生任何事情所以我试图调试它并尝试让它绘制这样的图表,
这是我试图运行的代码。
import math
import numpy as np
import time
import multiprocessing as mp
import matplotlib.pyplot as plt
def f(x):
return math.acos(math.cos(x) / (1 + 2 * math.cos(x)))
b = math.pi / 2
a = 0
exact = math.pi ** 2 / 16
h = (b - a)
def g(j):
global a
global h
return (f(a + (2 * j - 2) * h) + 4 * f(a + (2 * j - 1) * h) + f(a + (2 * j) * h))
if __name__ == '__main__':
mp.freeze_support() #needed for Windows
pool = mp.Pool(processes=mp.cpu_count())
serial_times = []
parallel_times = []
intervals = []
for i in range(1, 10):
n = 10 ** i
h = (b - a) / n
N = int(n / 2)
intervals.append(N)
start_time = time.time()
p = pool.map(g, np.linspace(1, N, N, dtype=np.int32))
P = (h / 3) * np.sum(p, dtype=np.float32)
elapsedTime = time.time() - start_time
parallel_times.append(elapsedTime)
start_time = time.time()
S = 0
for j in range(1, N+1):
S += f(a + (2 * j - 2) * h) + 4 * f(a + (2 * j - 1) * h) + f(a + (2 * j) * h)
S *= h / 3
elapsedTime = time.time() - start_time
serial_times.append(elapsedTime)
#Plotting
plt.plot(intervals, serial_times, label='Serial Computation')
plt.plot(intervals, parallel_times, label='Parallel Computation')
plt.xlabel('Interval Count (N)')
plt.ylabel('Runtime (s)')
plt.xscale('log')
plt.yscale('log')
plt.title('Simpson\'s Rule Computation Time vs Interval Count')
plt.legend()
plt.show()