我正在尝试为黑白棋游戏制作一棵可能的走法树,稍后我将在其中使用极小极大算法。游戏以玩家 vs AI 模式进行,玩家棋盘上有“1”,AI 为“2”。这是我当前为 AI 获取最佳动作的函数:
def findMoveForAI(board, player, depth, start):
best_score_for_move = -float('inf')
play_x = play_y = -1
moves = validMoves(board, player)
if not moves:
return (play_x , play_y)
for x, y in moves:
# this is where I am trying to make a tree
(temp, total_fillped) = PlayMove(copy.deepcopy(board), x, y, player)
move_eval = AlphaBeta(temp, player, depth, -999999999999, 999999999999, True, start)
if move_eval > best_score_for_move :
best_score_for_move = move_eval
play_x = x; play_y= y
return (play_x , play_y)
另外,这就是我初始化板的方式:
board = [['.' for x in range(8)] for y in range(8)]
在我在代码中标记的地方,我试图为人工智能在那一刻的每个可能的移动创建一棵树,然后对其进行极小极大并获得最佳可能的移动。
我有
class TreeNode
和 class Tree
用于构建树:
class TreeNode(object):
def __init__(self, data):
self.parent = None
self.children = []
self.data = data
def is_root(self):
return self.parent is None
def is_leaf(self):
return len(self.children) == 0
def add_child(self, x):
x.parent = self
self.children.append(x)
class Tree(object):
def __init__(self):
self.root = None
这就是我尝试制作树的方法:
def makeTree(tree, board, player, depth):
if depth > 0:
new_player = change_player(player)
possible_moves = validMoves(board, new_player)
for x, y in possible_moves:
new_board = PlayMove(copy.deepcopy(board), x, y, new_player)[0]
child_tree = makeTree(tree, new_board, new_player, depth - 1)
tree.add_child(child_tree)
return tree
但是现在这会创建许多
Tree
实例,而我需要一棵树和许多节点。我如何用这种递归方法解决这个问题?
您需要递归函数返回
TreeNode
实例,而不是 Tree
实例。然后,顶层调用将返回根节点,然后应将其分配给单个 root
实例的 Tree
属性。
我还建议创建一个
Edge
类,这样您就可以存储有关在父板中下棋的信息,以便访问子板。
如果我理解正确的话,你想要将 minimax/alphabeta 算法与实际的游戏规则分开,并首先创建状态树(特定于游戏),然后将其提供给通用的 minimax/alphabeta 算法,然后该算法可能会被忽略关于游戏规则,只需关注树中的信息即可。
这是一个实现的想法:
class Tree:
def __init__(self):
self.root = None
class TreeNode:
def __init__(self, board, player, value=None):
self.parent = None
self.children = []
self.board = board
self.player = player
self.value = value # Initially only provided for leaf nodes
def is_root(self):
return self.parent is None
def is_leaf(self):
return len(self.children) == 0
def add_edge(self, edge):
edge.child.parent = self
self.children.append(edge)
def to_list(self): # to ease debugging...
return [self.board, [edge.child.to_list() for edge in self.children]]
class Edge:
def __init__(self, x, y, child):
self.x = x
self.y = y
self.child = child
def makeTree(board, player, depth):
def makeNode(board, player, depth):
if depth == 0: # Create a leaf with a heuristic value
return TreeNode(board, player, heuristic(board, player))
node = TreeNode(board, player)
new_player = change_player(player)
possible_moves = validMoves(board, new_player)
for x, y in possible_moves:
new_board = PlayMove(copy.deepcopy(board), x, y, new_player)[0]
node.add_edge(Edge(x, y, makeNode(new_board, new_player, depth - 1)))
return node
tree = Tree()
tree.root = makeNode(board, player, depth)
return tree
您的
findMoveForAI
和 AlphaBeta
函数将不再获得 board
和 player
作为参数,也不会调用 PlayMove
。相反,他们只会遍历这棵树。 findMoveForAI
将获取树实例作为参数,AlphaBeta
将获取节点作为参数。根据存储在树的叶子中的值,这些值将在执行时在树中冒泡。
所以
findMoveForAI
可能看起来像这样:
def findMoveForAI(tree):
best_score_for_move = -float('inf')
play_x = play_y = -1
for x, y, child in tree.root.children:
move_eval = AlphaBeta(child, depth, -999999999999, 999999999999)
if move_eval > best_score_for_move:
best_score_for_move = move_eval
play_x = x
play_y = y
return (play_x , play_y)
驱动程序代码将有以下两个步骤:
DEPTH = 3
# ...
tree = makeTree(board, player, DEPTH)
best_move = findMoveForAI(tree)
# ...