我有一个数据帧,包括特定磁力计站随时间的测量结果,列对应于:
我想知道如何将此数据框绘制为测量变量的极坐标直方图:即:
我已经查看了physt
中的特殊直方图,但是这样我只能输入x,y值,而且我很困惑。
有人可以帮忙吗?
使用numpy.histogram2d
可以轻松地计算直方图。可以使用matplotlib的pcolormesh
绘制生成的2D数组。
import numpy as np; np.random.seed(42)
import matplotlib.pyplot as plt
# two input arrays
azimut = np.random.rand(3000)*2*np.pi
radius = np.random.rayleigh(29, size=3000)
# define binning
rbins = np.linspace(0,radius.max(), 30)
abins = np.linspace(0,2*np.pi, 60)
#calculate histogram
hist, _, _ = np.histogram2d(azimut, radius, bins=(abins, rbins))
A, R = np.meshgrid(abins, rbins)
# plot
fig, ax = plt.subplots(subplot_kw=dict(projection="polar"))
pc = ax.pcolormesh(A, R, hist.T, cmap="magma_r")
fig.colorbar(pc)
plt.show()
这似乎是你正在寻找的:https://physt.readthedocs.io/en/latest/special_histograms.html#Polar-histogram
from physt import histogram, binnings, special
import numpy as np
import matplotlib.pyplot as plt
# Generate some points in the Cartesian coordinates
np.random.seed(42)
x = np.random.rand(1000)
y = np.random.rand(1000)
z = np.random.rand(1000)
# Create a polar histogram with default parameters
hist = special.polar_histogram(x, y)
ax = hist.plot.polar_map()
链接的文档包括更多颜色示例,bin大小等。
编辑:我认为这需要进行一些调整以使数据处于正确的形状,但我认为这个示例说明了库的功能,可以根据您的使用情况进行调整:
import random
import numpy as np
import matplotlib.pyplot as plt
from physt import special
# Generate some points in the Cartesian coordinates
np.random.seed(42)
gen = lambda l, h, s = 3000: np.asarray([random.random() * (h - l) + l for _ in range(s)])
X = gen(-100, 100)
Y = gen(-1000, 1000)
Z = gen(0, 1400)
hist = special.polar_histogram(X, Y, weights=Z, radial_bins=40)
# ax = hist.plot.polar_map()
hist.plot.polar_map(density=True, show_zero=False, cmap="inferno", lw=0.5, figsize=(5, 5))
plt.show()
这不是完整的答案,但你可以找到一些想法听到:https://github.com/TronSkywalker/Visuals/blob/master/Circular_bar_charts.py
让我知道你走了多远!:)